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Abbreviations:

CASP Critical Assessment of techniques for protein

Structure Prediction1

(http://predictioncenter.llnl.gov/)

EVA continuous automatic evaluation of protein

structure prediction servers

(http://cubic.bioc.columbia.edu/eva/)

NMR nuclear magnetic resonance

PDB Protein Data Bank, currently hosted at the

Research Collaboratory for Structural

Bioinformatics (http://www.rcsb.org/pdb)

RMSD root mean square deviation

SCOP structural classification of proteins

(http://scop.mrc-lmb.cam.ac.uk/scop/)

Introduction
Ever since Anfinsen’s classic demonstration of the reversible

denaturation of ribonuclease established that the tertiary

structure of proteins in solution may be determined primarily

by their amino acid sequence (Anfinsen 1973), there has

been intense interest in predicting protein structure from

sequence – sometimes referred to as ‘cracking the protein

code’. However, almost three decades on from this

experiment we are unable to routinely decode protein

sequences to reveal their underlying structure. Nevertheless,

the field has steadily made progress and can currently be

divided into three main areas of active research: ab initio,

classically defined as the folding of the protein sequence

according to physical principles; fold recognition (or

threading), recognising that a protein sequence may

represent a protein fold already classified by experimental

techniques; and comparative protein modelling (herein

referred to as comparative modelling), a method of protein

modelling encompassing the fact that the structural

templates found to model the protein sequence of interest

(query sequence) could either be related by homology

(common ancestor) or by analogy (common protein fold

but not obviously evolutionary related) (Russell et al 1997).

Structural genome projects are leading biologists to a

complete understanding of the cell by describing all proteins

at the atomic level (Rost et al 2002). Predicted protein
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interactions can then be tested, even simulated, and their

associated cellular mechanisms understood. However,

currently there are approximately 60 times more protein

sequences than protein structures, hence structural coverage

of any one particular genome is rather sparse (this figure

was calculated from the number of nonredundant protein

sequences and structures). Current comparative modelling

methods can potentially alleviate this problem since they

have been estimated to provide up to a twentyfold increase

in structural coverage (Baker and Sali 2001; Vitkup et al

2001) over the experimental data within the PDB database

(Berman et al 2000). The main reason for this is the large

number of fully sequenced genomes, including the human

(Venter et al 2001), incorporated into public sequence

databases. This raises the accuracy of essential sequence-

based tools used by comparative modelling, for example

secondary structure prediction (Przybylski and Rost 2002).

On the other hand, the contribution that predicted structure

itself makes to the understanding of protein function is being

debated, with many experts suggesting caution when

transferring functional features even between homologous

proteins (Devos and Valencia 2000; Thornton et al 2000;

Irving et al 2001; Rost 2002).

Early genome projects, apart from sequence-based

protein function annotation, have permitted large-scale

structural modelling projects (Sanchez and Sali 1998, 1999).

Such efforts provide molecular biologists with instantly

accessible models for a proportion of proteins within each

sequenced genome. In addition, recent novel methodologies

(Aloy and Russell 2002) will permit the discovery of genomic

protein–protein interaction networks, although molecular

models for such interactions are not currently available.

Other problems which are tentatively being tackled

include docking protein models (Tovchigrechko et al 2002),

mapping protein motions (Hayward 1999; Karplus and

McCammon 2002), using models to help understand the

interplay of complex metabolic networks (Alves et al 2002)

and probing the specificities of the immune system (Oliva

et al 1998). In addition, the screening of large protein model

databases with even larger small molecule databases should

one day prove useful, not just in terms of designing drugs

to modulate protein function (Peitsch 2002), but also in

calculating the potential side effects of those drugs, ie

unintended modulation of protein function (Rockey and

Elcock 2002). There is, therefore, a pressing need for highly

accurate, high-throughput and automatic comparative

modelling software.

However, as the results from four CASP experiments1

have shown, little progress seems to have been made in

algorithmic developments that have directly improved the

overall accuracy of the comparative modelling approach

(Tramontano et al 2001). Nevertheless, essentially due to

increases in various protein database sizes, particularly

protein sequences, many useful models can now be predicted

even at very low sequence similarity between the query and

best template sequences. The possible reasons that

comparative modelling is not able to obtain a consistently

high level of accuracy will be outlined, but first the current

comparative modelling protocols and underlying algorithms

must be described.

Comparative modelling protocols
Figure 1 outlines the key generic model building steps used

by most developers in the field. These steps shown are

common to the two main modelling protocols; satisfaction

of spatial restraints (Sali and Blundell 1993) and building

up a protein by inheriting segments of other proteins (Greer

1981; Jones and Thirup 1986). However, some of the steps

may be executed concurrently or in a different order.

search and select template(s)

yes

align query to template(s) profile

build loops

final model(s)

query sequence

template(s)>1

build core

align & superimpose
templates

optimised model:
selection of

optimal loop and
side-chain conformations

energy refinement/
molecular dynamics

Figure 1 Generic steps in comparative modelling protocols. Dotted lines
indicate optional or parallel steps.
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Finding the best templates
Templates can be found by sequence similarity alone or by

using additional sources of structural information, such as

secondary structure. The former approach is used by the

BLAST (Altschul et al 1997) and FASTA (Pearson and

Lipman 1988) families of programs, where a query sequence

is scanned against a database of template sequences using

broad-spectrum matrices, such as BLOSUM (Henikoff and

Henikoff 1993) or PAM (Schwartz and Dayhoff 1978), to

score the alignments. Increased sensitivity can be gained

by using the information of protein families (represented

as position-specific scoring matrices or hidden Markov

models) as family-specific matrices and by using

intermediate sequence searching procedures (Baldi et al

1994; Krogh et al 1994; Eddy 1996; Park et al 1998; Schaffer

et al 2001). Still further sensitivity can sometimes be gained

by including structural information such as residue solvent

accessibility and secondary structure (Rost 1995; Kelley et

al 2000; Shi et al 2001), or by combining different alignment

strategies (Elofsson 2002). However, as low sequence

similarity templates generally yield low accuracy models

(Vitkup et al 2001), some comparative modelling programs,

for example SWISS-MODEL (Guex et al 1999), use less

ambitious and simpler methods to assure the quality of their

results at the risk of missing some modelling targets (see

Table 1).

Table 1 Freely available comparative modelling Web servers and programsa

Server/program name and URL Modelling method References

3D-JIGSAW Looks for homologous templates and splits the query sequence (Bates et al 2001;

http://www.bmm.icnet.uk/servers/3djigsaw into domains. If good templates are found the best-covered domains Contreras-Moreira and
are modelled, currently using a maximum of two templates. Different Bates 2002)

loops are tried to connect secondary structure elements taken from

the templates. The best model within the ensemble is then selected
and refined.

CPHmodels A neural network based method to predict C-α contacts to drive (Lund et al 1997)
http://www.cbs.dtu.dk/services/CPHmodels the sequence alignment. No side chains are constructed.

ESyPred3D Exploits a new alignment strategy using neural networks. (Lambert et al 2002)
http://www.fundp.ac.be/urbm/bioinfo/esypred Complete models built with MODELLER.

Nestb Allows building of models with one or several templates tuning
http://trantor.bioc.columbia.edu/~xiang/ their alignments and permitting artificial evolution.

jackal/#nest

MODELLERb Builds a complete model based on alignments prepared by the user. (Sali and Blundell
http://guitar.rockefeller.edu/modeller The procedure is based on satisfying spatial restraints (automatically 1993; Fiser et al 2000)

computed from the templates used). Models are refined using a

variety of algorithms.

Modzinger Z Templates are aligned to the query sequence to build a library of

http://peyo.ulb.ac.be/mz/ backbone fragments. Fragments are then combined to build alternate
models and scored. Finally side chains are added.

Pcomb Pcomb uses a combination of several sequence-profile and profile-
http://www.sbc.su.se/~arne/pcomb sequence searches. Final models are produced using MODELLER.

Protinfo A core model is built for each template found by sequence similarity
http://protinfo.compbio.washington.edu to the query. Loops and side chains are then added to the best

scoring models.

SDSC1 Templates are found using intermediate sequences primarily found by
http://cl.sdsc.edu/hm.html BLAST. Phylogenetic trees are used to weight pairwise alignments.

Only backbone coordinates are returned.

SWISS-MODEL Templates found by BLAST are superimposed and then aligned to the (Guex et al 1999)

http://www.expasy.org/swissmod query sequence excluding loop regions. The core is then calculated as

a weighted average of the templates. Loops are then added and the
final model is refined.

TSUNAMI Fragments of templates found by a BLAST-like algorithm are
http://www.pirx.com/tsunami assembled and the final model is evaluated using statistical potentials.

a These programs return atomic coordinates to the user. Most fold-recognition servers return only alignments and therefore are not listed here.
b Downloadable software.
NOTE: All websites accessed 29 January 2003.
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Most of the above methods for identifying suitable

templates perform local alignments by finding maximum

scoring sequence patches, which do not necessarily

correspond to complete protein domains. For this reason,

databases of protein structural domains, for example SCOP

(Murzin et al 1995) or CATH (Orengo et al 1997), have

been used to define templates (Kelley et al 2000; Contreras-

Moreira and Bates 2002). For the same reason, multi-domain

proteins remain a problem for comparative modelling

programs, and despite preliminary efforts (Contreras-

Moreira and Bates 2002) most servers rely on the user’s

knowledge of how to split their query sequence into domains

before submission.

Aligning the templates and query
Once the complete set of possible template(s) has been

found, it is necessary to select a subset from which to build

the actual model. Modellers have long preferred to use

several templates where available (Sali and Blundell 1993;

Guex et al 1999; Bates et al 2001; Venclovas 2001), but the

practical advantage of this approach has not yet been proven

(Tramontano et al 2001). Indeed, most methods would

perform better if the single ideal template could be

recognised, but unfortunately pairwise sequence identity is

not a consistent criterion by which to address this question

(Wood and Pearson 1999; Koehl and Levitt 2002). If several

templates are to be used they have to be optimally aligned

to drive the process of model building. ClustalX (Thompson

et al 1994), T-Coffee (Notredame et al 2000) and similar

programs can be used for this, despite the fact they can only

produce approximations to optimal solutions for more than

two sequences. But because sequence similarity between

templates can be very low, it may be necessary to use their

structural similarity to align them. In this case, programs

such as SSAP (Taylor and Orengo 1989), STAMP (Russell

and Barton 1992) or CE (Shindyalov and Bourne 1998) may

be used.

Finally, the query sequence needs to be accurately

aligned to the template(s); again sequence and structural

information is often used. Typically the alignment procedure

must exclude gaps in secondary structure elements and

anchor the alignment in non-loop regions. In addition, key

functional motifs should also be correctly aligned, for

example P-loops (Walker et al 1982), EF-calcium-binding

loops (Kawasaki and Kretsinger 1995) and catalytic triads.

Databases of such motifs have been constructed, including

PRINTS (Attwood et al 1998) and BLOCKS (Henikoff et

al 1999); however, we are unaware of any automatic

modelling procedure that takes advantage of these extremely

useful sources of information.

Modelling by satisfaction of spatial
restraints
This family of approaches was first proposed in the mid-

eighties (Braun and Go 1985; Havel and Snow 1991; Sali

and Blundell 1993) and consists of computing geometrical

and biochemical restraints from the set of superimposed

templates that the aligned query sequence will have to

optimally satisfy. This method considers the possible

templates as a sample of the folding space for a group of

homologous proteins. Since the query sequence is believed

to be another homologous member of the group, it will have

to fulfil the restraints dictated by its relatives. As a

consequence, models built using this method are derived

from every template used and do not directly inherit

backbone segments from any one template. Optimisation

of possible conformations according to the restraints can

be done in a variety of ways, including conjugate gradient

minimisation (Sali and Blundell 1993), simulated annealing

(Ogata and Umeyama 2000) and graph theory (Samudrala

and Moult 1998). The weakness of the method is that

templates need to be reasonably superimposable to define

the restraints and that some regions are poorly restrained.

Its strength however, is that it can directly model an entire

protein structure as a continuous chain. Methods which

essentially apply distance constraints to reconstruct the

protein backbone, such as neural networks (Lund et al 1997),

also fall into this category.

Modelling by fragment building approaches
This has historically been the most popular approach for

comparative modelling and is based on grafting protein

fragments from the template(s) to build up the query

structure (Greer 1981; Jones and Thirup 1986; Blundell et

al 1987; Sutcliffe et al 1987; Bates et al 2001). This method

has clear limitations in modelling sections which differ

widely between templates, such as loops, because matching

of the selected fragments is non-trivial and often requires

additional modelling steps (see below). However, the benefit

of the approach is that sections confidently inherited from

the templates (good agreement between templates) have

intrinsically good geometry and require minimum

subsequent optimisation. A related but novel methodology

has recently been applied to ab initio protein structure

prediction. This uses small protein fragments extracted from
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templates that are not necessarily homologous (Unger et al

1989; Simons et al 1997; Kolodny et al 2002), allowing

models to be built where no significant sequence similarity

is found to any template.

Optimisation
Once the basic model has been constructed, most protocols

then investigate loop and side-chain optimisation. In the

context of a protein, a loop can be defined as a region of

variable length and irregular shape connecting secondary

structure elements (Branden and Tooze 1999).

If there is a high sequence similarity with the template

then these homologous loops may be modelled in a similar

way to the rest of the protein (Greer 1981). The methods

for constructing loops for less conserved regions fall into

two main categories: database searches and ab initio

methods.

Database searches are based on grouping observed loops

in the PDB and building a library. This method relies on the

assumption that the set of structures used is large enough to

produce a database that covers all possible geometrical

configurations that protein loops can adopt. However, as

segments of up to nine residues with the same sequence

can have completely unrelated conformations in different

proteins (Sander and Schneider 1991; Mezei 1998),

sequence alone cannot be used as a method of defining

useful groups. Early classification systems relied on manual

investigation of loops within specific environments, such

as β-turns (Ventkatachalam 1968), γ-turns (Rose et al 1985;

Milner-White 1987) and α-α, α-β, β-α and α-α arches

(Edwards et al 1987; Rice et al 1990; Colloch 1991; Efimov

1991). More recently, automatic classification systems have

been used, which classify the loops according to the local

environment and intra group RMSD (Kwasigroch et al 1996;

Wintjens et al 1996). More specific and tighter clusters have

also been generated by specifically taking into account

bracing geometry, Ramachandran patterns and sequence

(Oliva et al 1997).

The ab initio loop prediction methods are based on a

conformational search of the space to be filled. There are

many methods that use different search algorithms and

different energy functions. Some of the search algorithms

used include the minimum perturbation random tweak

method (Fine et al 1986; Shenkin et al 1987; Smith and

Honig 1994), systematic conformational searches

(Bruccoleri and Karplus 1987; Bruccoleri et al 1988),

molecular dynamics simulations (Bruccoleri and Karplus

1990; Rao and Teeter 1993; Nakajima et al 2000), energy

minimisations (Lambert and Scheraga 1989; Dudek and

Scerage 1990; Dudek et al 1998; Fiser et al 2000), genetic

algorithms (McGarrah and Judson 1993), Monte Carlo

techniques (Collura et al 1993; Evans et al 1995; Carlacci

and Englander 1996; Thanki et al 1997), scaling relaxation

(Zheng et al 1993; Rosenbach and Rosenfeld 1995; Zheng

and Kyle 1996) and dynamic programming (Vajda and

DeLisi 1990).

The jury remains out as to whether database or ab initio

methods are the more accurate for small to medium size

loop construction. For example, in 1994 a study assessing

the effectiveness of database methods concluded that they

were only sufficient for loops of up to 4 residues (Fidelis et

al 1994). However, later work showed that with some

optimisation of the loops, the limit for database searches

could be raised to 9 residues (van Vlijmen and Karplus

1997). For a loop of this size, ab initio methods need to

generate substantial numbers of loop configurations to fully

sample conformational space. What is clear is that in both

the database and ab initio methods a scoring function is

required to select the correct loop from the ensemble

searched. Many scoring functions have been tried and the

effectiveness of these dictates the final accuracy that can be

attained. Scoring functions remain a problem and may

require a deeper consideration of complete free energy

summations that include appropriately weighted terms, for

example loop entropy (Xiang et al 2002) and desolvation

(Janardhan and Vajda 1998).

Usually the second phase in optimising a model is the

addition and refinement of the side chains. Side-chain

prediction algorithms almost exclusively use a database of

rotamers, as this significantly reduces the complexity of

refining all the side chains in a protein at the same time.

Some early work (Lee and Subbiah 1991) was reasonably

successful at predicting the core side chains using simulated

annealing. A significant reduction in the number of

combinations of rotamers to search was made possible by

the dead-end elimination method (Desmet et al 1992; Lasters

and Desmet 1993; De Maeyer et al 2000), which allows the

early elimination of impossible combinations. Early work

noted that there was a significant tendency for side chains

to prefer certain rotameric states depending on secondary

structure (McGregor et al 1987). Similar investigations led

to the production of backbone dependent rotamer libraries

(Dunbrack and Karplus 1993; Bower et al 1997). Methods

for searching the possible combinations were also being

developed, one of the most widely used being the self-

consistent mean-field approach (Koehl and Delarue 1994).
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Many of these approaches are often tested on known

crystal structures with the side chains removed. Whilst this

is fine for checking the accuracy of the methods, it does not

check the accuracy when used for predicting side chain

conformations for a comparative model that has backbone

errors inherited from the modelling process. Desjarlais and

Handel (1999) developed a method that allowed flexibility

in the backbone at the same time as the selection of the side

chains. This showed that even in core regions, significant

changes to the backbone inherited from homologous

proteins can occur to accommodate the new side chains,

and current methods that do not include backbone flexibility

would be severely impeded in choosing the correct rotamers.

It was also assumed that core regions were exclusively

dictated by van der Waals packing. However, this has been

shown to be insufficient on its own to define these regions

(Kussell et al 2001).

Recent work (Xiang and Honig 2001) has concluded

that there is no combinatorial problem in the choice of the

correct side chain on a correct backbone, but that as long as

a highly detailed rotamer library is used the limiting factor

becomes the scoring function. A detailed study (Jacobson

et al 2002) into surface side chains has shown that the crystal

environment has significant effect on the final conformation

adopted. In addition, limits for the maximum accuracy were

also calculated which showed that while it should be possible

to predict core regions to 90% accuracy compared with the

X-ray structure, many surface side chains adopted many

different conformations dependent on their environment.

Therefore, predicting single rotamer states for exposed side

chains is not justified. Given these constraints, many modern

methods do manage to achieve a reasonable level of

accuracy and even reach the limit in the core regions

(Mendes et al 1999; Petrella and Karplus 2001; Liang and

Grishin 2002).

Energy refinement and molecular dynamics
As a final step, some form of energy refinement is usually

performed on the models. This can be achieved by using

one of the energy minimisation software packages such as

CHARMM (Brooks et al 1983). Such refinements usually

have a small radius of convergence and are used simply to

remove steric clashes, particularly between side chains, and

ensure sensible covalent geometry is maintained around

each atom. Often this achieves little more than improving

the appearance of the model (Schonbrun et al 2002). Indeed,

there has been little work done to show if energy refinement

does in general slightly refine models in the correct direction.

A technique that enables a larger radius of convergence,

compared to standard energy minimisation, is molecular

dynamics. However, in a recent study on a small number of

protein models using state-of-the-art explicit solvent

molecular dynamics and implicit solvent for energy

calculations, only limited success was achieved in refining

some of the models closer to the native state (Lee et al 2001).

Error analysis
What are the most common errors in comparative models?

Following previous papers (Marti-Renom et al 2000; Bates

et al 2001; Tramontano et al 2001) and according to our

experience, three major sources of errors in comparative

models can be identified: template selection, sequence

alignment and loop/side-chain building.

Selecting templates becomes especially difficult when

their sequence similarity to the query is low (less than 25%–

30% of sequence identity). In these circumstances even

statistically significant sequence matches, for example found

by BLAST, can identify totally different folds.

As explained in detail above, there are many different

sequence alignment methods but so far none can be

considered optimal. However, whilst sequence identity is

not a consistent measure of expected alignment accuracy

(Tramontano et al 2001), alignments with over 40% of

sequence identity between query and template can be

considered confident (Marti-Renom et al 2000). Below this

threshold, alignments tend to accumulate errors.

Unfortunately these errors are inherited by the rest of the

modelling process and current protocols are not able to

detect them. A possible solution to this has been investigated

by building models from several alternative alignments and

then choosing the best, based upon energetic or statistical

potentials (Melo et al 2002). Finally, whilst no method is

perfect, it has been shown that by using several protocols

the optimal alignment may be obtained. The problem is then

reduced to being able to routinely identify this alignment

(Elofsson 2002).

Even in confident regions of sequence similarity, quite

different backbone conformations can be present in a

comparative model compared to the native or target

structure. These can confuse rational experimental design

and occur essentially because proteins are flexible (see

Figure 2a); proteins can exhibit different conformations

depending on their environment (Branden and Tooze 1999;

Liu et al 2002). A clear example of this problem is seen in

globular proteins that build the 30S ribosome. Many of them

have been solved independently and as part of the ribosome,
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and they show important differences in exposed loops and

N- and C-termini that seem to be important for function

(Brodersen et al 2002). If these structures are used as

templates they will yield different models for the same

protein.

If we are sure that the above alignment problems do not

affect the model under construction, we can then consider

loop building errors as the next major problem. Loops can

be confidently modelled if they are only up to 5 or 6 residues

long (Martin et al 1997). In fact, as mentioned previously,

loops of this size tend to form conformational clusters (Oliva

et al 1997; Branden and Tooze 1999). Longer flexible

fragments are usually not accurately modelled and indeed

some modelling protocols simply do not attempt to model

these regions (Venclovas 2001). However, since loops are

frequently important for protein function (Oliva et al 1997)

and are sometimes difficult to ‘see’, even for X-ray or NMR

structure determination experiments, we must look further

for solutions to this essentially mini protein folding problem.

One possible solution to this could be to consider an

ensemble of low energy loop conformations within a broad

free energy minimum (Xiang et al 2002).

The next level of uncertainty in models is at the side

chain level. As discussed earlier, provided the modelled

backbone quality is high, side chains are usually well placed

in the protein core but are subject to variations at the surface,

as shown in Figure 2b. The uncertainty in surface side-chain

rotamers can sometimes be resolved when considering

protein–protein interactions, as these reduce their degree

of flexibility.

Finally, a common problem in comparative modelling

is calculating exact relative domain orientations in multi-

domain proteins. Surprisingly, given the large RMSD errors

involved, this appears to be a subject for which a

comprehensive study has not yet been performed. Molecular

dynamics and protein docking techniques may aid the

solution to this domain-packing problem.

Quality control
What kind of RMSDs are we likely to expect between the

model and the experimentally determined structure? Chothia

and Lesk (1986) studied the sequence and structural

variability within protein families and observed that as the

sequence similarity between proteins decreased, the RMSDs

between their superimposed structures increased

exponentially. Based on the results from CASP experiments,

similar studies have been conducted on protein model

quality relative to closest template (Vitkup et al 2001).

Figure 3 shows the latest results from the EVA experiment

(discussed below) (Eyrich et al 2001) plus the authors’ own

in-house benchmark of model accuracy. In general,

regardless of the servers used, for protein sequences around

95% identical the backbone RMSD is expected to be under

1 Å; when the sequence identity drops to 30%, the expected

RMSD is around 4 Å. As can be seen in Figure 3, there is

Figure 2 (a) An example from the authors’ automatic server (3D-JIGSAW)
showing a model (black), based on a NMR template, optimally superimposed
onto the high resolution structure of the same protein eventually solved by X-
ray crystallography (grey). The NMR (template) and X-ray structures have
identical sequences. Interestingly, there are many conformational differences
throughout the fold (not just loop regions) giving a final RMSD of 2.5 Å. (b) The
backbone of a model (black) showing minor deviations from the experimental
X-ray structure (grey) modelled (3D-JIGSAW) from a 95% identical template.
Predicted core side chains (*) agree well with the observed. However, exposed
side chains can show significant differences in their rotameric states due to
crystal contacts (§), indicated here by the white side chains, or simply because
they are exposed to solvent (?), indicating that they probably have multiple
rotameric states.
NOTE: These proteins can be downloaded or interactively viewed at
http://www.bmm.icnet.uk/supplementary/review2003

a

b
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an increasing range of variability around these error

estimates towards lower sequence identities.

There is a formal quality control procedure to test and

evaluate new prediction techniques every two years – the

CASP experiments. Because the number of protein

structures predicted in each CASP experiment has been

small, the statistical significance of ranking the prediction

methods has been brought into question (Marti-Renom et

al 2002). However, the value of human expert analysis

should not be underestimated, as developers gain additional

insights into further developing their algorithms beyond that

given by pure numerical analysis. For example,

advantageous ways to mix current algorithms may be

suggested.

To address the statistical weakness of CASP and to help

modellers test their algorithms on a more frequent basis,

two continuous assessment projects have recently started:

EVA (Eyrich et al 2001) and LiveBench (focused more on

fold recognition programs, http://bioinfo.pl/LiveBench/)

(Bujnicki et al 2001). In these experiments, sequences of

proteins about to be released in the PDB database

(determined experimentally) are automatically sent to

participant servers around the world, which in turn send

back automatically built protein models. The benefit of such

on-line experiments is that the evaluation of model quality

is also fully automatic, enabling the results for each server

in the experiment to be posted on the Web very quickly and

at regular intervals; EVA results for example are tabulated

weekly. This enables molecular biologists to determine

which server(s) are currently likely to produce the more

accurate models and helps developers rapidly benchmark

and rank their new modelling algorithms against others in

the field. The handicap of these methods is that although an

extensive numerical analysis is performed, there is no human

overview of the interplay between these results and the

variety of complex methods used to obtain them.

Apart from the grosser limitations to the use of protein

models dictated by sequence similarity to the templates, the

user can check the stereochemical and thermodynamical

quality of models by using programs such as PROCHECK

(Laskowski et al 1993) and WHATCHECK (Hooft et al

1996). However, until a rigorous ranking scheme for model

a   RMSD(Cα) between protein models and their experimental 
structures in the PDB
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accuracy can be found, the final indication of the correctness

of a model protein will always lie in the hands of the

experimentalist.

Applications
As a consequence of the above quality controls, it is possible

to enumerate the applications for which protein models are

likely to be useful according to the sequence identity

between query and template (Marti-Renom et al 2000; Baker

and Sali 2001). Traditionally, molecular biologists have used

protein models to design site-directed mutagenesis

experiments and to understand mutant phenotypes in the

light of protein structure. Even very low sequence identity

templates yield useful models, some of which have given

insights into potential protein functions (see for example

Garmendia et al (2001) and Devos et al (2002)). Apart from

functional study applications, low resolution models are also

being used to build supramolecular structures (Zhang et al

2000; Wriggers and Chacon 2001; Aloy et al 2002; Elcock

2002). Mid-resolution models, derived from templates

around 50%–60% identity level, can be valuable as models

for use in molecular replacement (X-ray crystallography)

and the rational design of more stable proteins, for example

the addition of a disulphide bond (Mansfeld et al 1997).

Finally, high resolution models, those typically obtained

from templates over 90% identical in sequence, are being

routinely used as receptors to dock and rank small molecules

for potential pharmaceutical use (Mangoni et al 1999;

Schafferhans and Klebe 2001; Peitsch 2002). In addition, it

is accepted that the growing interest in unveiling protein–

protein interactions can benefit from the contributions of

comparative modelling and docking programs

(Tovchigrechko et al 2002).

In terms of finding disease-related proteins, and for

preliminary investigations of potential drugs to modulate

the functions of these proteins, the most important genome

to generate complete three-dimensional models for is

obviously our own human genome. Figure 4 shows the

number of human proteins with at least one domain that

can be modelled using comparative modelling techniques.

We estimate that up to 38% of the translated genome

contains domains which can be modelled using templates
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of at least 20% sequence identity. This would mean a level

of expected accuracy for each model of between 0.9 Å and

4.0 Å RMSD. These models could be used for any of the

tasks mentioned above, or to understand the structural effects

on proteins due to single nucleotide polymorphisms (Wang

and Moult 2001) or genetically characterised diseases at

the molecular level (Hogg and Bates 2000; Huyton et al

2000).

Problems and potential solutions
As the CASP experiments have shown, comparative

modelling involving some form of human intervention still

produces models of higher quality than models produced

from completely automatic procedures. Intervention seems

to be particularly critical in selecting adequate templates

and tweaking the alignments (Bates et al 2001; Venclovas

2001). Therefore, more algorithmic development is required

if we are to automatically select optimal templates and

alignments. Some progress has recently been made with

the former problem by selecting templates from large

ensembles of sequences, theoretically generated according

to their structural compatibility with a template (Koehl and

Levitt 2002). Recently the latter problem has also been

addressed by consideration of a weighted contribution of a

number of current sequence alignment protocols (Elofsson

2002). However, a full appreciation of the power of these

new approaches will probably have to wait until the results

of CASP5.

Irrespective of the above problems, increasingly more

is being asked of comparative modellers. For example, at

CASP4 they were expected to model as low as 13%

sequence identity with the closest template, and for CASP5

(results not known at the time of writing), of the 38 targets

considered to be within reach of comparative modelling,

10 have only between 10%–20% similarity to the closest

template. Many of the algorithms designed for comparative

modelling were not specifically designed to model at these

very remote levels, as this was then considered more the

domain of fold recognition experts. Interestingly, this is

leading to a progressive merging of the fold recognition

and comparative modelling fields. Comparative modellers

are learning from the fold recognition community how best

to detect very remote sequence relationships and how best

to align the query structure to those templates once

identified. Equally, those in the fold recognition community

are keen to learn how to generate full three-dimensional

models from their fold recognition and alignment

algorithms. Hopefully this will create a second generation

of algorithms, or a blend of algorithms, that are more likely

to be successful across a wide range of sequence similarity

between query and template sequences. Together with this

convergence of algorithms, and on the assumption that only

a limited number of protein folds exist, rational structural

genomics efforts may be the key to allow three-dimensional

modelling of any sequence in a matter of years (Baker and

Sali 2001; Vitkup et al 2001). However, the endgame of

protein modelling, refining medium resolution models to

high levels of atomic accuracy (levels of accuracy routinely

obtained in X-ray structures), may take considerably longer

as more sophisticated force fields (Halgren and Damm 2001)

and substantially more computer power at the fingertips of

developers may be required.

Web-based modelling
Although there are a number of well-maintained,

downloadable comparative modelling software packages

available, the future of comparative modelling as an essential

tool for biologists is the growing number of web-based

servers. Table 1 summarises the tools that are currently freely

available for academic use. The advantage of Web tools is

that they are very easy to run, even across different computer

platforms, often only requiring the query sequence and

user’s email address. In addition, the sequence and structural

databases that the algorithms require are usually maintained

by the developer, thus, linking software to the appropriate

up-to-date databases is not a problem. Several of these

servers are now allowing some user intervention in the

model building process, for example, SWISS-MODEL

allows choice of templates and the authors’ own server, 3D-

JIGSAW, allows both template selection and manual

adjustments of the query to template alignments.

Conclusion
There is little doubt that comparative modelling, if it is not

already considered to be so, will become an essential tool

for molecular biologists and those involved in rational drug

design. It is therefore essential that comparative modelling

tools are readily accessible, both in terms of downloadable,

easy to use software packages and versatile, quick response

web-based tools. Due to the high importance of this field,

algorithmic developments on all aspects of comparative

modelling must be encouraged. These necessary

developments range from template selection and sequence

alignments, to energy optimisation and movement analysis
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of the constructed three-dimensional models. This will

require dedicated efforts from scientists within a wide range

of disciplines, particularly mathematicians, physicists and

computer scientists. These developments are essential if we

are to routinely refine useful, but often low resolution

models, to the atomic resolution found within most X-ray

structures.
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Notes
1 This experiment, held every two years, is where the CASP organisers

(see for example Moult et al (2001)) send protein modellers the
sequences of recently determined structures before those structures are
actually published. Modellers then make predictions for those structures
and a committee of external assessors evaluates the quality of each
model. Finally, in December of that year, participants attend an
evaluation conference where the failures and successes of the modelling
protocols used, and possible improvements to them, are discussed. At
the time of writing, four CASP experiments have been completed and
the fifth, for which all predictions have been submitted, is currently
being assessed.
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