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Comparative modelling of proteins is a predictive technique to build
an atomic model for a given amino acid sequence, on the basis of the
structures of other proteins (templates) that have been determined experi-
mentally. Critical problems arise in this procedure: selecting the correct
templates, aligning the query sequence with them and building the non-
conserved surface loops. In this work, we apply a genetic algorithm,
with crossover and mutation, as a new tool to overcome the first two.
In silico protein recombination proves to be an effective way to exploit
the variability of templates and sequence alignments to produce popu-
lations of optimized models by artificial selection. Despite some limi-
tations, the procedure is shown to be robust to alignment errors, while
simplifying the task of selecting templates, making it a good candidate
for automatic building of reliable protein models.
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Introduction

Globular proteins with similar amino acid
sequences have similar structures. The exponential
function relating sequence similarity to structural
divergence was first derived by Chothia and Lesk
in 1986.1 This allows modelling proteins (queries)
at the atomic level based on structural knowledge
of their homologues (templates). In addition, the
accuracy of a model can be estimated from this
function. For proteins around 90% identical in
sequence, the root-mean-square deviation (rmsd)
for the backbone of their superimposed core is
expected to be below 0.5 Å. If the sequence identity
drops to 30%, the expected rmsd is around 4 Å.
There are many exceptions to this rule but,
in general, it is a good way to estimate the
accuracy of models, as experiments such as EVA
demonstrate.2,3

Apart from this natural limitation for protein
structure prediction based on a single template,
modellers still have several pitfalls to face: search-
ing for and selecting templates, sequence align-
ment between query and template, side-chain
placement and loop building. Many different
ideas have been applied to each of these tasks, but
as the Fourth Critical Assessment of Techniques
for Protein Structure Prediction (CASP4) meeting
concluded,4 the first two remain the most critical.

There are several methods and computer pro-
grams for protein comparative modelling, such as
MODELLER,5,6 SwissModel,7 3D-JIGSAW,8 FAMS9

and EsyPred3D,10 but they all share a common
generic algorithm.3,11 The procedure can be
summarised as follows.

Step 1. Template search and selection based on
sequence similarity to the query.

Step 2. If there are several possible templates,
calculate a multiple structural alignment.

Step 3. Align the query sequence to the single
or multiply aligned templates.

Step 4. Construct a model for the core of the
query structure based on the alignment.

Step 5. Build non-conserved loops connecting
secondary structure elements (SSE).

Step 6. Refine the complete model.
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The main problems highlighted in CASP4 affect
the first three steps. Steps 4–6 will only improve
the quality of the model if minimal errors occur at
the initial stages.

The aim of the current work is to design a
modelling procedure that automatically minimizes
errors during the steps 1–3. This problem can be
described as solving a combinatorial optimization
problem in template and alignment space. Because
genetic algorithms have been applied successfully
for optimization problems12 by mimicking chromo-
somal mutation and recombination, we chose this
algorithmic approach. In recent years, genetic
algorithms have been used by many groups to
study protein folding, protein docking and align-
ment optimization.13 – 18 Furthermore, recent experi-
ments have shown the possibility of generating
new, viable and useful protein folds via protein
fragment shuffling.19,20

Here, a genetic algorithm is applied to compara-
tive modelling. We call our method in silico protein
recombination, as it is a way to combine different
templates and alignments. It simulates artificial
genetic selection on a population of single-template
models created from different templates and dif-
ferent sequence alignments per template. Fitness
for each member of the population is defined as a
simple function of solvent accessibility and resi-
due–residue pair potentials on a simplified side-
chain representation. Due to the relatively long
computational time required, the number of align-
ments per template used throughout this work
had to be small, in the range of five to ten (see
Materials and Methods). As discussed later, this
new method permits the identification of more

favourable alignments and tertiary structure
conformations.

Results

In this section some experiments that led us to
test our new approach are described. In particular,
we concentrated on the first three steps of the
generic comparative modelling procedure; tem-
plate selection, query to template alignment and
single/multiple template modelling. For this, we
use our program 3D-JIGSAW, which has been
shown to be competitive in previous CASP
editions8,21 and in a continual online assessment of
comparative modelling (EVA†). We do not con-
sider that the results presented here are signifi-
cantly sensitive to the choice of a particular
comparative modelling program, since these
models are used only to build the initial popu-
lation for the recombination procedure (see
below). Only after presenting this preliminary
analysis can the value of the protein recombination
experiments be appreciated.

Single versus multiple template modelling:
what is the advantage?

In theory, due to the greater coverage of confor-
mational space, using more than one template
should generate a model that is more accurate
than any of the individual templates. However,

Figure 1. Single versus multiple template performance for comparative modelling. The program 3D-JIGSAW was
used to build models on the basis of structural alignments between query and template(s). This eliminates potential
sequence alignment errors. Models were built using between one and five templates from the same SCOP family,
with sequence identities ranging from 80–100%, 50–100% and 20–100% ðX-axisÞ: The Y-axis corresponds to the total
number of models in each bin. Multiple-template models are compared to the best single-template model, and are
considered significantly better or worse if their rmsd values after superimposition upon the experimental structure
are at least 0.6 Å different.

† http://cubic.bioc.columbia.edu/eva
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CASP4 showed that only very occasionally were
multi-template models more accurate than single-
template models. The reasons for this are the
choice of templates and sequence alignment
errors.4,21,22 As the limited number of targets for
comparative modelling in CASP4 precluded defini-
tive conclusions, we performed a simple experi-
ment using 3D-JIGSAW. (1) From each of 271
SCOP families,23 one protein domain (query) was
selected randomly to be modelled, the remainder
were used as potential templates. Two different
models were constructed; one using the template
with the highest level of sequence identity with
the query and the other using up to five templates.
Each query was aligned with its respective
template(s) on the basis of their known atomic
coordinates, in order to minimize alignment errors.
(2) Both models were compared to the experi-
mental structure.

From the results presented in Figure 1, it can be
concluded that our current methodology is not
taking full advantage of the possibility of using
several templates to build comparative models. In
general, multiple-template models are no better
than their corresponding ideal single-template
models and, indeed, can be considerably worse. A
minimum difference of 0.6 Å was used to compare
rmsd measures between models. This value
was chosen because it has been found to be the
maximal backbone variability observed either in
protein structures solved under different crystal
lattices, or comparing NMR and crystallographic
structures.24,25 Only in a marginal proportion of
cases were multiple-template models found to
improve over the ideal single-template model
(maximum improvement observed was 1.66 Å),

showing no preference for any region in the
sequence identity range. On the other hand,
multiple-template models could be significantly
worse (maximum deviation observed was 1.92 Å)
with a comparable frequency.

Because these results are similar to those
obtained in CASP4 for all the participant method-
ologies, it is tempting to think this is actually a
limitation of the generic method itself. In other
words, single-template models, on average, appear
more accurate, provided that the optimal template
can be identified. Errors in the template(s) align-
ment with the query may be disregarded as the
reason for this, because the models in the experi-
ment had been built from structural alignments.
The next step in the analysis was then to investi-
gate ways to classify the available templates.

How to select templates

Following the principle of “similar sequences
have similar folds”, quantified by Chothia &
Lesk,1 it seems reasonable to rank the possible
templates to build a model, using their sequence
identity with the query. Indeed, one of the more
successful programs for comparative modelling,
SwissModel,7 weights the contribution of each
template to the final model using exactly this
criterion. This rule has been used for the experi-
ment described above, but only after it was
decided to test its validity. For this, we simulated
the construction of single-template models for 392
SCOP domains. Up to four different models for
each were constructed using different templates.
Each set of models was then compared to the
experimental structure, and the results are shown

Figure 2. Up to four potential templates to build a model are ranked according to sequence identity with the query
sequence. A model is constructed from each and then compared to the experimental structure. The X-axis shows four
sequence identity bins between query and template. The Y-axis states the percentage of cases in which the first, the
second, the third or fourth-ranked templates yield the best model. Interestingly, around 25% of the time, the highest
ranked template does not produce the best model. This is observed along the whole sequence identity range.
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in Figure 2. This trivial experiment allowed us to
estimate the difficulty of selecting templates.
Perhaps surprisingly, errors in choosing the opti-
mal template are equally likely for each of the
sequence identity ranges used, with a frequency
of approximately 25%. If the optimal sequence
alignment could be found, sequence identity
would indeed be a good template classifier (results
not shown), suggesting that alignment errors mask
the identification of the best template. Similar diffi-
culties are encountered if templates are ranked
according to expectation values, based on simi-
larity scores, as shown in the last subsection of
Results. As a consequence, being unable to identify
the optimal template routinely forces us to
consider multiple templates in model building.

The optimal sequence alignment is not always
the best for modelling

As indicated above, probably the most persistent
problem in comparative modelling is aligning the
query sequence with the template(s). The main
information types usually available for these align-
ments are sequence and secondary structure. Here,
we analysed how often the optimal sequence
alignment between query and template, calculated
through dynamic programming,26 corresponds
to the model with the lowest rmsd from the
experimental structure.

Using a simple procedure (see Materials and
Methods),27 five alternative alignments were pro-
duced for each of 58 single-template models, with
sequence identities with the templates ranging
from 15% to 82%. For each of these alignments, a
model was constructed and then compared to its
corresponding experimental structure. The highest
level of sequence identity alignment provided the
lowest rmsd model in 42 cases, but the remaining
16 cases would have been modelled more accu-
rately using a suboptimal alignment. These sub-
optimal alignments have a range of sequence
identities with their templates, from 15% to 51%.

These results suggest that suboptimal align-
ments (and perhaps other alternative alignments)
should be considered routinely in model con-
struction rather than relying on the single optimal
sequence alignment. Indeed servers such as
EsyPred3D10 try to improve comparative model-
ling by considering alternative and consensus
alignments. Of course, this raises the question of
how to identify the best alignment. We have not
found rules that help at the sequence level, so we
must move to the structure level and search for
something such as a simple threading function.

A simple fitness function to compare
protein structures

We first tested a simplified representation of
proteins, depicting residues as backbone plus
side-chain centroid, and scoring the internal pack-
ing according to statistically derived atom–atom

potentials.28 We chose these potentials because
they explicitly consider backbone to side-chain
centroid contacts, thus not accounting for specific
rotamers. It is a coarse and relatively quick method
to score models. Both these features are important
for the subsequent use of these potentials in our
model-building procedure (see Results). On its
own, this function was not able to correlate
energies and rmsd of protein models consistently
(results not shown). Because proteins fold in solu-
tion, a solvation term29,30 was added to the fitness
function in a ratio of 1:1. This term is the sum of
residue solvent-accessible areas (as calculated
using the program NACCESS31) multiplied by
tabulated amino acid solvation free energies.32 As
an initial test to evaluate how efficient this fitness
function is, we applied it to the models built in
the suboptimal alignment experiment (see above)
to identify the best alignment: it correctly identified
optimal models in 51 out of 58 cases. Further
investigation was carried out to optimize the
ability of this function to assess protein confor-
mations and to weight the two terms, but
eventually a 1:1 weighting seemed to be at least as
good as other linear and non-linear combinations
(results not shown).

Protein recombination: a way to combine
different templates and different alignments

With the above fitness function, we were then
able to try the following modelling approach: to
use all available templates and different align-
ments for each of them with the query, expecting
to get an optimized final conformation. The way
genetic information is combined in Nature seemed
the most appropriate for our purposes, since pro-
teins, like DNA, are linear molecules. As we are
applying this mechanism to proteins, it was
decided to call this new approach in silico protein
recombination (see Figure 3). The algorithm is a
close analogy to genetic variability generation. The
recombination relies on two given protein models
being superimposed and a crossover chosen
between them at a random point (outside of regu-
lar SSE). In genetic terms, each protein would be a
sister chromatid. Mutation is a way of generating
novel molecular conformations. This is done here
by averaging the coordinates of two given models.
Although a choice of reasonable recombination
and mutation rates is important, the algorithm is
critically dependent on the quality of the fitness
function; it is, after all, this function that the
genetic algorithm seeks to optimize.

Testing an ideal fitness function: limits of
the method

It was necessary to show the usefulness of this
algorithm by first using an ideal fitness function.
In the present context this function is rmsd (see
Materials and Methods), since we know before-
hand the experimental structure of the proteins
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we are trying to model. An experiment was set up
to model 163 SCOP domains using their family
relatives as templates. Sequence-based alignments
were used to build these models (see Materials
and Methods). The domains consisted of 32 a, 44
b, 44 a/b and 45 a þ b protein folds. The results
(Table 1) show that using several templates in this
way permits building models that, on average, are
not significantly more accurate than the optimal
template (improvement of 0.46 Å), but never
worse. However, in some cases the improvement
is significant (up to 2.33 Å), mainly because of
loop choices. For models with no templates with
over 40% of sequence identity, the average
improvement becomes significant (0.88 Å). From a

population point of view, using this algorithm,
models in the last generation show a consistent
improvement (2.6 Å better than the initial popu-
lation).

A second important conclusion of this experi-
ment was that mutation does not contribute signifi-
cantly to the gain in accuracy, as noticed in similar
genetic algorithm approaches.18 Finally, because
we use rmsd as a fitness function, this experiment
shows that our algorithm could not improve
further, regardless of the fitness function we apply.

Testing the method to correct alignment errors
using the simple fitness function

The next experiment was set up to gain insights
into the ability of this method to correct alignment
errors using a real fitness function. Eight SCOP
domains were selected: two a (d1a03a_ and
d1a8h_1; shortened to A1 and A2), two b (d1qfja1
and d2phla1; B1 and B2), two a/b (d1pmt_2 and
d1poxa2; C1 and C2) and two a þ b (d1pne__ and
d1a5r__; D1 and D2) folds. For each of them,
models were built using their known experimental
structures as templates. Variable patches of the
query sequence were shifted randomly one, two,
three or four positions with respect to its correct
place in the otherwise perfect sequence alignment.
Thus, every initial modelling population was
composed of partially wrong protein models and
was fed into the recombination program. The num-
ber of models used for the initial populations was
five. Five replications for each of the eight sets
were performed. Figure 4 shows that this algo-
rithm is able to recombine models to yield better-
alignment models, suggesting that it is robust
enough to overcome alignment errors if partially
correct alignments are present in the initial popu-
lation. Again, this reinforces the view that using
models constructed from different alignments
should result in more favourable protein confor-
mations. A more detailed analysis of this experi-
ment, illustrating a typical protein recombination
simulation, is shown in Figure 5, taking d1pne__
as an example. In this instance, after generating an
initial population in which every member had
serious alignment errors, a recombination exper-
iment spanning over 13 generations converged
onto a final population in which members had per-
fect alignments, with rmsd from the ideal model of
0.8 Å (0.05 Å for the backbone). Crossover points
found in the final models are shown in the
multiple structural alignment of the initial models
(Figure 5A) and in a molecular representation
(Figure 5B).

Recombining models built from different
templates and alternative alignments

Protein recombination experiments were set up
to model the same previous eight SCOP domains
(A1 to D2, see above). To build the initial popu-
lation of models for each simulation we used

Figure 3. In silico protein recombination flowchart. R
and 1 2 R are probabilities.

Table 1. Benchmark of in silico protein recombination
using rmsd to the experimental structure as fitness
function

D Average rmsd
(Å)

D Best template
rmsd (Å) Generations

A. Up to 100% identity: N ¼ 163
Best 27.49 (27.60) 22.33 (21.77) 1 (3)
Mean 22.60 (22.53) 2 0.46 (20.39) 8 (8)
Worst 2 0.16 (20.23) 2 0.04 (0) 15 (14)

B. Up to 40% identity: N ¼ 50
Best 27.49 (27.60) 22.33 (21.77) 2 (4)
Mean 22.77 (22.67) 20.88 (20.78) 10 (9)
Worst 2 0.48 (20.3) 2 0.05 (0.01) 17 (18)

A, Models using templates of any sequence identity; B, only
templates below 40% sequence identity were used. Values in
parentheses correspond to simulations using only recombina-
tion, otherwise mutation has been applied also. The first column
shows the final average population rmsd with respect to the
initial rmsd values. The second column shows the evolution of
rmsd with respect to the optimal template, had we identified it.
Non-significant differences are shown by the use of italics. The
last column shows the number of generations needed to reach
convergence.
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single-template models built from alternative
alignments (with the same template) and from
several templates in their corresponding SCOP
families. The number of models used for their
initial populations ranged from 10–102. In
addition, to analyse how different recombination
runs for the same input can be, each initial popu-
lation was used to start ten independent recombi-
nation processes. The results are shown in Figure
6. The picture arising from this experiment is that
alignment shifts are minimized upon recombina-
tion and can go beyond the best initial model in

the population. At the same time, final populations
average rmsd values are comparable to the best
initial model seeded. Furthermore, these simu-
lations pointed out the importance of running the
same population of models through recombination
several times to exploit the capability of the
method fully. Since this is a population-based
method, a population answer should be provided.
This can be achieved by running independent
simulations on the same input. Analysis of these
experiments showed that, on average, rmsd
between independent runs are not significant, so

Figure 4. Protein recombination is able to generate optimal alignments and more accurate models from populations
of models obtained from randomly shifted template alignments. Eight model populations (for sequences A1, A2, B1,
B2, C1, C2, D1 and D2) were created using randomly shifted alignments. For each sequence, four different populations
were generated, using shifts of one, two, three and four residues. Finally, each population was recombined five times.
Final population averages (marked as periods) for each experiment are shown in the same column. (a) Note that align-
ment shifts tend to disappear upon recombination with respect to the best initial model (marked as –). (b) At the same
time, rmsd from the known experimental structure tend to diminish.
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they could be considered as ensembles of protein
conformations, analogous to NMR structures.

Large-scale benchmark of the method

To conclude the benchmark of the method, a
large-scale protein recombination experiment was
tested on a set of 130 SCOP domains (27 a, 38 b,
26 a/b and 39 a þ b protein folds). Domains were
modelled using their family relatives as templates
and only one sequence alignment per template.
Due to computing time limitations only, one inde-
pendent run was performed for each of the 130
populations. Despite this handicap, the algorithm
produces final populations of models that are
comparable to the best initial model (see Figure 7
and Table 2) and that are consistently better than
the initial population (around 1 Å). In 92% of the
cases (89% for models built from templates 40% or
less identical in sequence), final population models
are not significantly different from the best initial
model. However, as expected from the reference
experiment, using rmsd as a perfect fitness func-

tion, no improvement is seen beyond this limit.
The good news is that the algorithm converges
onto protein conformations close to the optimal
model, suggesting that our method sorts templates
better than sequence identity measures and that
there is no need to select templates for modelling.
The bad news is that more favourable protein con-
formations, according to the fitness function, do
not always correspond to lower rmsd states (see
Figure 8B for an example) and that, on average,
the algorithm is not taking full advantage of the
expected possibilities of combining different tem-
plates. To some extent this was predictable, since
only one alignment per template was used for
this experiment, making the method comparable
to 3D-JIGSAW in that respect. A more detailed
analysis follows.

Improvements in accuracy

After recombining 130 sets of single-template
models, only three final populations have confor-
mations significantly better than the optimal

Figure 5. Protein recombination experiment in detail. Four shifted-alignment models (1_S, 2_S, 3_S and 4_S) for
d1pne__ (cow profilin, 1PNE) were generated. Their rmsd from the non-shifted conformation (ideal model) ranged
from 2.3 Å to 9 Å and their average alignment shift per residue from 0.16 to 2.68. The structural alignment of these
initial models with the known structure of d1pne__ is shown in A. The top row shows the STICK-assigned secondary
structures for the template (H for a-helix and E for b-sheet). The x in the bottom row mark frequently observed cross-
over points in models in the final population, displayed in space in B. The experiment rmsd and shift profiles are
shown in C, After 13 generations the simulation converged and the final population has an average rmsd of 0.8 Å
from the experimental d1pne__ structure (only 0.05 Å from the backbone) and no alignment shift.
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template model (over 0.6 Å of rmsd difference).
Inspection of these models and others with minor
improvements (30 recombination experiments)
shows that the improvements come from choosing
alternative surface loop conformations or from
small subdomain movements. Figure 8A shows
one example in which the final population in the
experiment achieved an rmsd from the known
structure of the protein that is significantly
better (0.89 Å) than the model built using the best

template. In this case the improvement comes
from the relative orientation of two subdomains
from different templates that have been arranged
together. Nevertheless, it is clear that, on average,
models in populations do not improve their rmsd
over that of the optimal template model. The
value of this method is that it converges con-
sistently around the optimal template’s con-
formations, and these cannot be identified
routinely.

Figure 6. Alternative alignments
and different templates improve
the performance of protein recom-
bination. For each of eight protein
model sets, ten recombination
replications were carried over and
their final population averages
are shown in the same column.
(A) Note that alignment shifts tend
to diminish upon recombination
with respect to the best initial
model (marked as –). (B) On the
other hand, rmsd improvements
are not equally consistent. (C) Struc-
tural similarity of eight final popu-
lation models for protein B2, with
the range of rmsd shown in B.
Note that the precise region where
the major differences are found
( p ) is a small, flexible, helical sub-
domain interacting closely with the
next monomer when this seed sto-
rage protein (2PHL) hexamerizes.

600 Comparative Modelling Through Artificial Protein Evolution



Improvements in alignments

As a result of this experiment, it may be con-
cluded that populations improve their average
alignment shift (with respect to their structural
alignment) through rounds of fitness selection and
recombination. On average, this improvement is
about 0.16 shift per residue (see Table 2), but
the ceiling of this improvement is again usually
dictated by the optimal template model. Figure 9
shows how observed improvements in population
energies correlate to average alignment shifts and
rmsd changes through recombination experiments.
A linear correlation between energy improvement

and alignment shift change is found (Figure 9A),
but the interdependency between energy evolution
and rmsd change (Figure 9B) is less clear, and can
be approximated only tentatively by a logarithmic
function.

Benchmark including PSI-BLAST alignments

To compare our results to those obtained with
a standard alignment program, PSI-BLAST,33 we
reinvestigated the same test set of 130 SCOP
domains. This time only templates found by PSI-
BLAST, and that were less than 40% identical with

Figure 7. Performance of in silico
protein recombination in a set of
130 unique experiments designed
to model SCOP domains. Each
model comes from a single
sequence-aligned template. (A)
Average population alignment shift
measures are compared at the
beginning (black continuous line)
and when the algorithm converges
(grey continuous line). Final popu-
lations of models are significantly
better than initial (see Table 2) and
the degree of improvement is lim-
ited by the best initial model (black
broken line) had we known it
beforehand. (B) Average population
rmsd from experimental structures
for each SCOP domain is compared
at the beginning and at the end of
each experiment. Final population
rmsd values are often over the best
initial model, but differences are
not significant in 120 out of 130
experiments (see Table 2).

Table 2. Benchmark of in silico protein recombination using our simple fitness function

D Average
rmsd (Å)

D Best template
rmsd (Å)

D Average shift
(shift/residue)

D Best template shift
(shift/residue) Generations

A. Up to 100% identity: N ¼ 130
Best 24.17 20.88 21.66 20.18 11
Mean 21.06 0.4 20.16 0.02 24
Worst 2.47 5.66 0.17 0.37 30p

B. Up to 40% identity: N ¼ 44
Best 24.13 20.88 21.41 20.18 12
Mean 20.98 0.24 20.2 0.05 25
Worst 0.67 2.37 0.17 0.44 30a

A, Models using templates of any sequence identity; B, only templates below 40% sequence identity were used. The first column
shows the final average population rmsd with respect to the initial rmsd values. The second column shows the evolution of rmsd
with respect to the optimal template, had we identified it. Non-significant differences are shown by the use of italics. The third
column shows the final average alignment shift with respect to the initial population. The fourth column highlights the same value
now with respect to the best template. The last column shows the number of generations needed to reach convergence. Overall,
in 92% of the simulation experiments the final population has an average rmsd from the experimental structure comparable to
the model built from the best template, meaning that this method consistently identifies the best templates. If only the 40% subset is
considered, the figure drops slightly, to 89%.

a Maximum generations allowed.
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the query sequence, were used (see also Materials
and Methods). Alignments were taken directly
from the program’s output and subsequent models
built using 3D-JIGSAW. These were added to
models built using the same templates, but with
our own alignments that consider secondary-struc-
ture information. The aim of the experiment was to
compare the final population of recombined
models to the PSI-BLAST-based model constructed
from the alignment with the best e-value: The first
observation from this experiment is that only 54
out of 130 domains can be modelled within these

constraints, since templates for the remaining
could not be found using default parameters. On
this reduced dataset, recombined populations of
models tend to be, on average, 0.51 Å closer to the
corresponding experimental molecular structure
than the best e-value PSI-BLAST-based model.
More importantly, the corresponding difference in
alignment shift was, on average, 0.42 shift/residue
better than the PSI-BLAST model. However, in
three cases, the recombination protocol did not
improve beyond the PSI-BLAST alignment; indeed
the original PSI-BLAST aligned models had better
agreement with the experiment in some exposed
loops. Again, these results suggest that further
improvements can be made to the energy function.

This experiment suggested that simply taking
the best e-value; and associated template, from a
standard PSI-BLAST output, does not necessarily
produce the best model. On average, in these 54
examples, models built from the best e-value align-
ment were 0.81 Å worse than the best models built
from the ensemble of templates found by PSI-
BLAST. In other words, e-values are not necessarily
a good indication of how good a model would be,
as shown in Figure 2 for sequence identity. This
observation holds for alignment accuracy, since
the best models in terms of e-value are, on average,
0.58 shift/residue worse than the corresponding
best model.

Reinvestigating the fitness function

Finally, to investigate our fitness function when
applied to recombination experiments, these 54
populations of models were taken to further assess
the contribution of the solvation term. This was
done by recombining these populations with and
without this term in the energy function. The
comparison of these simulations provides a clear
conclusion: inclusion of the solvation term yields
better recombinant models in terms of deviation
to the experimental structures and alignments
shift in 22 out of 54 domains; the remainder are
very similar. On average, selecting models without
the solvation term yields models that are 0.4 Å
worse than those selected including it. Alignments
are further displaced by an average of 0.05 shift/
residue.

Discussion

The results presented here provide insights into
two recurrent problems in protein comparative
modelling; selecting templates and alignment
errors. The novel methodology proposed here
deals with both simultaneously and, despite some
deficiencies, it is found to be robust to alignment
errors. It classifies possible protein conformations
confidently for a given sequence on the basis of its
homologous partners in the structural database,
the templates. These two features are crucial to
automation of the construction of comparative

Figure 8. Limitations of the algorithm. Global rmsd
improvements come usually from surface loop move-
ments (these are intrinsically flexible anyway) or small
subdomain movements, as can be seen (A) in the exper-
iment to model d1apr__ (mould acid protease 2APR)
from a population of 11 models built from different
templates from the same SCOP family. The final popu-
lation model is depicted in white, while the best initial
model is shown in black ( p points to the main differ-
ences observed comparing the two models and ? shows
a broken loop, a common side-effect of protein recombi-
nation). The worst rmsd result obtained in our protein
recombination benchmark is shown in B, where it was
attempted to model d1dt0a1 (superoxide dismutase
N-terminal domain in 1DT0) from an initial population
of eight models. The simulation yields a final population
rmsd of 5.35 Å while the optimal template model (shown
in black) is only 0.89 Å away from the known experi-
mental structure. In this particular example, the long
loop ( p ) is taken from a template (1MNG) whose
crystallographic contacts bent the helical bundle.
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models. Nevertheless, comparison of the fitness
function with the ideal suggests that further
improvements can be made to this function. Some
limitations and applications of this algorithm are
discussed below.

Applications

As shown in the analysis of the results, the
method presented here improves the alignment
accuracy of protein comparative models and
avoids the step of selecting templates, since models
from all possible templates can be used. If these
models are to be used as guides for site-directed
mutagenesis experiments, one of the most popular
applications,11 alignment accuracy is essential to
target the correct residues. Comparative models
have been applied to fit protein structures into
electron microscopy density maps of single
molecules or supramolecular complexes,34 – 37 and
alignment accuracy is therefore important to
place the corresponding protein parts into the
experimental data.

A different application of modelling, at the
population level, would be to gain insights into
fold flexibility within a given molecule or even
across families, because members of the same
population of models can have geometrical differ-
ences that cannot be penalized at the level of fit-
ness. This could simply be pointing out the
weakness of the fitness function used, but recent
papers,30,38 using different functions and different
approaches, such as the Metropolis rule, propose

that sequence or structure ensembles represent the
nature of a given protein fold more faithfully.

The most important feature of this methodology
is its ability to recover alignment errors and to
generate different alignments from those contained
in the initial population. This could be used to
combine comparative models obtained from dif-
ferent sources, templates and alignments to get,
not a consensus answer (something other pro-
grams already do39), but a model close to the
optimal template that could correct alignment
errors found in the initial population. Indeed,
this feature has been confirmed by the relatively
promising results obtained by our group using
protein recombination in CASP5, particularly
within the remote homology section, where align-
ment errors are more frequent (B.C.M. et al.,
unpublished results).

Limitations

The presented algorithm has several limitations,
the most obvious being the fitness function.
Improvements to it will be translated into improve-
ments of the algorithm performance, within the
limits defined in our benchmark using an rmsd
function as a way to calculate fitness. This means
that the algorithm can potentially take advantage
of better fitness functions found by the community
in the future or those already described in the
literature.29,30,40 However, better functions typically
require more computing time, which may limit
their practical applicability. In addition, because

Figure 9. Correlations between
energy improvements in popu-
lations and alignment and rmsd
improvements calculated on data
from 130 recombination experi-
ments. (A) A linear correlation is
found for the change in average
alignment shift, suggesting that it
could be predicted, to some degree,
from experimental energy profiles.
(B) The correlation to rmsd is
weaker and is modelled with a
logarithmic function only tenta-
tively, suggesting that it would be
of little value to predict rmsd
improvements from energy profiles.
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the algorithm creates new protein conformations
every generation by “cut and paste”, if finer energy
functions were used, it would be necessary to
minimize protein conformation energies every
generation, adding yet more computational over-
head to the process. The fitness function used for
this work was chosen as it is fast to calculate at
the price of being less accurate. This has the benefit
that population members need not be minimized
every generation. Despite this, protein recombina-
tion experiments can still last for hours in a worst-
case scenario (see Materials and Methods). As a
consequence, in a practical situation, models
generated by in silico protein recombination often
need to be minimized, particularly to fix broken
loops. In general, the energy function used and
the run-time checks are sufficient to produce
models with minor stereochemical problems
that can be fixed with a subsequent full-atom
minimization algorithm.

The second limitation of the method is the search
for meaningful alternative alignments to the
modelling templates. We have shown the ability of
the method to recover from some alignment errors
and to improve the population alignment accuracy,
but the condition is that partially correct align-
ments should be present in the initial population.
If all the initial alignments for, say, helix1 are
wrong, the method would not be able to provide
an accurate conformation for that part of the pro-
tein. This suggests that models used for recombina-
tion experiments should cover different reasonable
alignment possibilities. Unfortunately the total
number of possible sequence alignments is vast
and no hint can be given about the minimal align-
ment set required to solve the problem. Sub-
optimal alignment strategies, like that used in our
experiments,27 and different alignment procedures
could be used, since it is accepted that different
sequence alignment tools usually give different
answers to the same non-trivial alignment problem
and often each of them would give optimal align-
ments in particular cases but not in others.41

Finally, the stochastic nature of the algorithm
implies that slightly different answers for the
same input can be obtained. This can be utilized
to provide useful information concerning fold
flexibility, as discussed above, but would of course
require additional computing time.

The role of mutation

One of the findings of this work is the secondary
role of mutation, compared to recombination, in
generating useful conformation variability. This
would, in theory, undermine the capacity of the
method to generate novel protein conformations,
substantially different from any of the templates
used. Of course, this is related to the way the
mutation mechanism is implemented, and because
the current method is simply an averaging
procedure, with no attempt to correct generated
distorted side-chains, we believe it is possible to

increase the contribution of mutation. It would
imply quality checks after averaging or, as with
SWISS-MODEL,7 averaging only the Ca atoms and
then reconstructing the rest of the residue.

To test if variability generated by other means
could improve the performance of the method, a
protein recombination experiment was done in
which the original sets of initial models were used
to generate extra compatible protein conformations
using the method CONCOORD.42 The results
(not shown) were not significantly different, so we
concluded that mutation, in this context and with
this fitness function, is secondary to recombination.
Similar observations have been made in related
contexts.18

Crossover and secondary structure elements

An important feature of the method is the choice
of crossover points between models. In this algo-
rithm, crossover is permitted to occur only out of
regular SSE, as defined by STICK,43 a program
that assigns secondary structure states on the basis
of vectors that represent the topology of the fold.
The reason for this, is that protein geometry
would otherwise be distorted seriously, requiring
additional efforts to reconstruct reasonable con-
formations. This was avoided for strictly practical
reasons and there is no reason to believe that
genetic recombination, to which this algorithm is
analogous, occurs only outside of DNA regions
coding for regular SSEs.

Conclusion

The method presented here is a novel way to
explore the space of sequence alignment and tem-
plate variability simultaneously for comparative
modelling applications. In spite of some limi-
tations, such as the small number of alternative
sequence alignments used and relatively high com-
puting requirements, the procedure is found to be
robust to alignment errors, making it an attractive
tool for automatic model construction. The method
is capable of providing compatible conformations
for the same sequence. Finally, this algorithm
would benefit from future improvements to
sequence alignment and model building techniques,
and of course the growth of the Protein Data Bank.

Materials and Methods

3D-JIGSAW flowchart for building
comparative models

The program 3D-JIGSAW8 builds models in a series of
steps.

Step 1. Search for templates.
Step 2. Align template(s) to query sequence using

sequence and secondary structure information.
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Step 3. Trim alignments to exclude gaps from secon-
dary structure elements (SSE).

Step 4. Take aligned SSEs from templates and look
for loops to connect all the possible combinations of
SSE along the query sequence.

Step 5. Mutate sequences to the actual query
sequence and add rotamers for each side-chain.

Step 6. Mean-field selection of SSE backbone frag-
ments and side-chains.

Step 7. Fix breaks and minimize energy of the com-
plete model.

For the experiments described here, step 1 is
bypassed.

Protein test sets from SCOP

For every experiment described here, protein families
from SCOP 1.5523 were selected randomly from the four
major classes (337 a, 276 b, 374 a/b and 391 a þ b pro-
tein families). Only a non-redundant fraction (90%
sequence identity cut-off) of protein domains in each
family, according to the ASTRAL database,44 was
considered.

To benchmark in silico protein recombination, using
the simple fitness function explained below, the follow-
ing SCOP domains were selected as query proteins to
be modelled using proteins in the same family as tem-
plates (27a, 38b, 26 a/b and 39 a þ b): d1pbk__(4),
d1pama2(7),d1pne__(6),d1poxa2(3),d2phia_(16),d1pina2(4),
d1pvxa_(6),d1pvaa_(5),d1psra_(6),d1ppn__(13),d1a75a_(5),
d1a5da2(9),d1a25a_(5),d1a33__(6),d1a03a_(6),d1a0aa_(4),
d1a0ca_(3),d1a1s_1(4),d1a81a1(15),d1ad3a_(2),d1adwa_(9),
d1ae7__(16),d11bga_(8),d2abl_2(14),d2act__(13),d1acz__(7),
d1qaua_(6),d2aaib2(8),d2aaib1(7),d1an8_2(6),d1an4a_(4),
d1qnna2(10),d1qnga_(8),d1qo8a3(3),d1aoza3(2),d1aoa_2(3),
d1aoga1(7),d1alo_3(5),d1allb_(11),d1alla_(11),d1ala__(9),
d1qlca_(6),d1qk1a1(4),d1qkka_(9),d1qh7a_(6),d1aisa2(7),
d1aisa1(5),d1ain__(9),d1aw0__(5),d1aw1a_(8),d1awpa_(3),
d1awca_(4),d1qpca_(5),d2apr__(11),d1qqya_(8),d1qqka_(5),
d2ay1a_(6),d1ayaa_(16),d1b26a2(2),d1b2pa_(5),d1b06a2(10),
d1b1xa1(8),d1b8za_(3),d1bg3a3(3),d1bg0_1(5),d1be9a_(4),
d2bb2_1(9),d1bb9__(15),d1rbla2(5),d1rblm_(5),d1bc4__(9),
d1blxb_(4),d1bla__(5),d1bjwa_(6),d1bkja_(3),d1bkb_2(2),
d1bh6a_(6),d1bhda_(3),d1bwva2(5),d1bwya_(13),d8ruci_(5),
d1burs_(5),d2rspa_(4),d1rp1_2(5),d1bzsa_(8),d1bxta2(6),
d1bxsa_(2),d1c4zd_(4),d1c1da1(2),d1c9ha_(4),d1cf5a_(6),
d1ce7a_(6),d1scha_(4),d1clh__(8),d1ck7a2(8),d1sw6a_(4),
d2ctha_(6),d1ste_1(3),d1crka1(5),d1srra_(9),d1crb__(13),
d1cs8a_(14),d1csee_(6),d1cpcb_(12),d1cpn__(2), d1cpt__(3),
d1cyda_(3),d1d6aa_(7),d1d3ca2(7),d8dfr__(3),d1teha1(6),
d1tcda_(8),d1dn2a2(14),d1tnra_(3),d1dot_1(7),d1dlpa2(6),
d1dmxa_(3),d1dt0a1(8),d1duvg2(4),d1duxc_(5),d2trxa_(7),
d1dssg2(5),d1dsya_(5),d1tx4b_(11),d1e3pa2(2),d1e3ia1(6),
d1e1oa1(2), d1u9aa_(4),d1ef5a_(3),d1egza_(4). The num-
ber of templates used in each case is indicated in
parentheses.

For the detailed analysis presented in Results, only
eight SCOP families were considered, two of each class.
Each of them contained several templates with a variable
degree of sequence identity with the query. They were:
d1a03a_ (rabbit calcyclin, 1A03); d1a8h_1 (Thermus
thermophilus methionyl-tRNA synthetase, 1A8H);
d1qfja1 (Escherichia coli flavin oxidoreductase, 1QFJ);
d2phla1 (Phaseolus vulgaris seed storage protein, 2PHL);
d1pmt_2 (Proteus mirabilis glutathione transferase,
1PMT); d1poxa2 (Lactobacillus plantarum pyruvate oxi-
dase, 1POX); d1pne__ (bovine profilin, 1PNE) and

d1a5r__ (human small ubiquitin-related protein SUMO-
1, 1A5R).

Single versus multiple-template modelling

The 271 families from SCOP were selected randomly.
A draw was made to select one protein domain (query)
in each family to be modelled using the other proteins,
in the same family, as templates. Templates in each
family were ranked by sequence identity with the query.
Only the first would then be used for single-template
models, or down to the first five for multiple-template
models.

To bypass alignment errors in this experiment, the
query sequence was aligned with the best template
using the known molecular structure (taken from the
Protein Data Bank45), permitting us to reach conclusions
concerning the templates. In particular, query and best
template were aligned structurally and superimposed in
space using distance-driven dynamic programming, a
previously tested approach.46,47 In our implementation,
two given Cb atoms are considered to be equivalent if
the distance between them is less than 3 Å.

When more than one template was used, a multiple
structural alignment was built and only the leader
sequence was then aligned to the query.

Optimal and suboptimal sequence alignments

When query and template sequences were needed to
be aligned, we used the evolutionary sequence profile of
the query as scoring matrix complemented with their
three-state (a-helix, b-sheet and coil) secondary structure
matching. Sequence profiles (position-specific scoring
matrices, pssm) were computed after five iterations
of PSI-BLAST33 against the nr database† with default
parameters. The secondary structure for the template
was assigned by running the program DSSP48 on the
original set of coordinates taken from the PDB database.

The secondary structure of the query was predicted
using its sequence profile and the program PSI-PRED.49

To compute the score for any cellij in the alignment
matrix the log-odd for residue j (template) in the query
pssm (position i) was taken and 1 added if their residue
secondary structure states matched. After filling the
matrix, it is normalized so that the maximum value of
any cell is 1. Then the dynamic programming procedure,
as modified by Gotoh,50 proceeds using a gap opening
penalty of 1.0 and an extension penalty of 0.25.

After computing the optimal alignment, the pssm is
used to calculate the average log-odd score (or bit-score)
per residue. Alignments were considered for the experi-
ments only if their bit-score was over 2.0. This cut-off
was chosen after a benchmark of sequence alignment
techniques (data not shown).

To generate suboptimal alignments, the guidelines
explained in detail previously27,51 were followed to
implement an iterative dynamic programming function
that discovers non-trivial suboptimal alignments by
penalizing positions aligned in previous iterations. After
computing one alignment trace, aligned residues are
marked to be penalized in the next iteration. The penalty
chosen for the next iterations was 20.1.

† http://www.ncbi.nlm.nih.gov
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Atomic deviation measures: rmsd

For the first three experiments explained in Results
(covering single versus multiple templates) selecting
templates and alternative alignments, the reported rmsd
values were obtained after superimposing pairs of
models with the program SSAP.52 These measures
correspond to average deviations between all pairs of
equivalent Ca atoms.

For the recombination experiments, the rmsd calcu-
lations are now based on Cb and are calculated as part
of our structural superposition routine described above.
This rmsd function is:

rmsdðp; qÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðpi 2 qiÞ
2

n

vuuut

where p and q are sets of n Cb atoms in Cartesian space.
Both measures are based on all the equivalent pairs

of residues obtained after aligning two sequences,
including loops.

Fitness function 5 internal
contacts 1 solvation energies

The fitness function is a free energy estimate based on
two components: residue–residue contacts and solvation
energies:

fitnessðpÞ ¼ contactsðpÞ þ solvationðpÞ

To calculate the first term, protein models are simplified
so that every residue is represented as only four pseudo-
atoms (CO, Ca, NH and R, the side-chain centroid). A
total contact energy (all-against-all) for each model can
then be calculated quickly by using precomputed statis-
tical atom–atom potentials using a soft Lennard–Jones
type function. The representation and the statistical
potentials used have been described.28

The solvation term is calculated as the sum of all-atom
side-chain solvent-exposed area (calculated with
NACCESS†) multiplied by tabulated empirical residue
solvation free energies.32

To compare protein models with different lengths,
total energies are divided by the number of residues.

Genetic algorithm: recombination 1 mutation

The flow diagram of the algorithm is shown in Figure
3. Here, we explain the details of the implementation.
To begin, an initial population of protein models is
required, composed of more than one member. These
models can be generated from different templates and/
or different query to template sequence alignments.
Then the population is grown until the selection size is
reached (50 members in our recombination experiments).
At this point, the fitness is estimated for every member
of the population. Only a given proportion (typically
75%) of protein models is selected as seed for the future
generation (founder population). This process is iterated
until the founder population becomes homogeneous
(in this work, defined as when the fitness difference
between the best and worst founder is less than
0.1 kcal mol21 residue21 (1 cal ¼ 4.184 J)).

A population grows to reach selection size by selecting
two mating protein models randomly. In the draw,
members of a population have a probability of selection
that increases proportionally to the number of siblings
they have, according to:

probðpÞ ¼
number_siblingsðpÞ þ 1

sizeðPÞ þ total_number_siblingsðPÞ

where p is a member of the population P:
With a probability of R (0.9 in this experiment) these

two mates will undergo recombination, otherwise they
will generate a mutant model.

A recombination event starts by superimposing the
two mates as follows. (1) Cb superposition based on
sequence alignment. Because they have identical
sequences, this alignment is trivial. (2) Refinement
based only on equivalent residues; tolerance is set to
twice the average Ca–Cb distance (3.61 Å).

Once this complex is formed, a random event is
needed, the selection of the crossover point. For this,
only regions with no regular secondary structure, as
defined by STICK‡ are considered. The recombinant
protein is made of the N terminus of one protein and
the C terminus of the other; the boundary is the cross-
over point. The program always cuts and pastes proteins
in coil regions and therefore the geometry of loops
involved in crossover events may be severely affected.
No attempt is made to fix them on run-time in the
present implementation.

The mechanism for mutation is simply an all-atom
Cartesian space average of the two selected mates, once
they have been superimposed. Some mutant proteins
may have seriously distorted geometries.

After a reproduction event, the program does a simple
phi, psi, omega angle analysis to reject sibling proteins
with bad stereochemistry (more than one main-chain
break and more than 4% non-planar peptide bonds).

A protein recombination experiment can take from
five minutes to several hours (running serial Cþþ code
on a 2.4 GHz PentiumIV desktop PC running Linux)
depending on the size of the sequence to model and the
population. Thus, it is usually more expensive than
building models using traditional methodologies. The
most time-consuming step of the algorithm is growing
each population, but this could be done in parallel if
a farm of computers is available by performing one
reproduction event per node.

Alignment shift calculation

To calculate the quality of the alignments in the pro-
tein recombination experiment, the resulting models in
each population were aligned structurally with their
corresponding real structures, as taken from the PDB
database. Taking these alignments as references, the
average number of shifts per aligned residue is
computed. As models and real structures have identical
sequences, this computation is trivial. An average shift
of 0 means that the real structure and the model can
be superimposed optimally using their corresponding
sequence alignment. A value of 1 would mean that
every residue is displaced, on average, by one residue.

† http://wolf.bms.umist.ac.uk/naccess ‡ http://mathbio.nimr.mrc.ac.uk/ftp/wtaylor/stick
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Generation of models from shifted alignments

The sequence for each of the eight query SCOP
domains (described above) was used as input for the
interactive form of the web server 3D-JIGSAW† and five
alignments with the top template (100% identical in
sequence) were shifted one, two, three or four positions
to either side of a randomly selected residue before
building the models. The resulting complete models
were used in the recombination experiment.

Building models from PSI-BLAST output

PSI-BLAST version 2.2.5 was used with default para-
meters. The database used was the same as that used by
our 3D-JIGSAW server, prepared by merging PFAM53

and PDB sequences. Five iterations were used and the
output was parsed to extract the alignments with a
maximum of eight templates. Models were built from
these alignments using 3D-JIGSAW. The average e-value
of the alignments used was 8E-03. PSI-BLAST models
were, on average, 1.7 residues shorter than correspond-
ing models aligned by our procedure.

Figure preparation

The Figures showing protein structures were prepared
with Rasmol54 and MOLSCRIPT.55

Software

A test version of in silico Protein Recombination is
available‡.

Model sets used in this work are available from the
authors on request.
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