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Abstract Most protein structure prediction methods use tem-
plates to assist in the construction of protein models. In this pa-
per, we analyse the current state of template-based modelling
approaches and reach an estimate of the empirical limits of these
methods. Our analysis show that current prediction methods are
already reaching these empirical accuracy limits in the easier
cases, where finding a close homologue to the native target struc-
ture is not a problem. However, we find that even in the absence
of alignment errors and using optimal templates, template-based
methods have intrinsic limitations, suggesting that other method-
ologies, such as ab initio procedures, must be used if accuracy is
ultimately to be improved.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Methods for protein structure prediction can be classified

into two basic classes: those which use physical principles

to fold a protein and those which use experimentally deter-

mined structures to help reconstruct the protein of interest.

The first class is usually known as ab initio approaches [1];

the second includes related techniques such as comparative

modelling, fold recognition and threading [2–7]. These gener-

ally use sequence alignments to map the sequence to be mod-

elled onto protein templates of known structure and are

guided by criteria such as sequence similarity or secondary-

structure compatibility.

This paper deals mainly with the second class of methods,

template-based methods. The empirical basis for these ap-

proaches comes from the observation by Chothia and Lesk

[8] that protein sequence identity and structural similarity are

correlated. According to their original results there are clear

empirical limits for protein structure predictions based on sin-
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gle templates: for proteins sequences around 95% identical

backbone deviations are expected to be under 1 Å RMS; when

the sequence identity drops to 30%, deviations grow to around

4 Å RMS. These limits broadly agree with the observed perfor-

mance of comparative modelling servers as measured by con-

tinuous benchmarks such as EVA [9] (see [10] for a review),

and ultimately affect the quality and therefore the applicability

of template-based predictions [11].

In addition to these natural restrictions, methods for tem-

plate-based prediction of protein structure must solve two

technical problems: the choice of the template closer to the tar-

get structure, and the derivation of the sequence alignment be-

tween the query and template protein closer to the optimal

structural alignment. The lack of satisfactory solutions for

these two problems has been identified as negatively affecting

the performance of fold recognition and comparative model-

ling methods in previous ‘‘Critical Assessment of Techniques

for Protein Structure Prediction’’ experiments (CASP [12])

[13,14].

However, choosing the correct template and alignment are

not the only problems facing predictors. Even those models

built from the correct template and alignment often require

substantial refinement in order to be sufficiently close to the

native target structure. This paper seeks to estimate the limits

of current template-based structure prediction techniques un-

der ideal conditions, that is building a model a posteriori using

multiple optimal templates and in the absence of alignment

errors.

We do that by allowing models to be built by combining

aligned fragments from several templates, selected by struc-

tural similarity. We then measure, using the CASP GDT_TS

score [15], how the best fragment-based predictions compare

to the native target structure.

Additionally, we ask how far the predictions are from these

best possible models. This gives us a better idea of how suc-

cessful the current modelling methods are, how good they

could be in the absence of the sequence alignment problem,

and can implicitly tell us to what extent ab initio methods

would be needed to improve the current performance of tem-

plate-based methods.
2. Datasets, methods and algorithms

A collection of 68 targets, as split in domains by the CASP5 organ-
isers, was taken as our test set (see http://predictioncenter.llnl.gov/
casp5). These targets are proteins whose experimental structures were
about to be released at the time CASP5 started (May, 2002). To model
blished by Elsevier B.V. All rights reserved.
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these targets we needed a library of PDB templates and for that we
used a 90% non-redundant set of PDB chains from April 2002, ob-
tained from PDB-SELECT [16]. Since CASP5 started in May 2002
we were sure that we did not have access to templates not available
to the predictors at that time. This library included 6182 PDB chains.
Then, we designed our procedure with five steps to be applied to

every CASP5 target:
(1) Search the template library for a list of significantly similar PDB

structures.
(2) Superimpose all found templates in the target�s frame of refer-

ence.
(3) Calculate a large number of fragment-based models from the

ensemble of templates and evaluate them using typical CASP
evaluation parameters.

(4) Compare the best fragment-based model to the target structures.
(5) Compare the best fragment-based model to the best model pro-

duced by CASP5 predictors.
Note that no fragment readjustment is performed, since we felt this

was an ab initio technique.
Each of these steps was implemented as follows:

1. To search the template library we used the program MAMMOTH
[17] and took only those templates that yielded a �ln E score over
4.5, to avoid using marginally similar structures. Only the top 40
hits were considered.

2. To superimpose the selected templates in the frame of reference of
the target we used two programs, MAMMOTH and LGA [15], to
generate alternative sequence-independent superpositions. Other
superimposition protocols could be added in this step, but for dem-
onstration purposes we felt that two were enough. In the case of
MAMMOTH, the coordinates of the superimposed template
needed to be transformed using the rotation matrices and transla-
tions provided in the output.

3. This was the most important step in our protocol, the generation of
a collection of models for our target by fragment reconstruction
from the superimposed templates. This step included several sub-
steps, as shown in Fig. 1 and was based on a previous work [18]:
Fig. 1. Graphical example of the construction of fragment-based models from
built starting from a fragment of 5 residues in template 1. This fragment is the
there are three options, three possible fragments and the one from template 2
target�s coordinates. Towards the right of the starting fragment, initially onl
was extracted from template 3 and this was actually extended since no othe
3.1. Construct a multiple alignment from the pairwise structural
alignments between target and templates, with the target as
the frame of reference. This multiple alignment can be re-
garded as a matrix with each row in the matrix corresponding
to a template, each column to an aligned set of residues and
their backbone coordinates.

3.2. In this sub-step, we define ‘‘fragment’’ as a contiguous set of
template residues that have been aligned without gaps by
either MAMMOTH or LGA. As suggested by related work
[19,20], fragment length is an important parameter and here
we tried values of 5 and 9 residues. To score fragments we
used a score similar to GDT-TS [15,21], the main evaluator
used in CASP experiments. GDT-TS score measures similar-
ity between two structures based on a combination of the
fractions of matching residues within distance cutoffs of 1,
2, 4, and 8 Å. MyGDT is similar to GDT-TS but calculated
on just one superimposition. It is calculated as
P1 + P2 + P4 + P8/4, where P.n. is the % of residues in the
template closer than n Å to the corresponding residues in
the target. In this sub-step, fragments of the chosen length
in the matrix are labelled and their myGDT scores are calcu-
lated and stored.

3.3. For each labelled fragment a new fragment-based model by
growing it towards both N and C termini within the matrix
applying iteratively these greedy rules:
3.3.1. If one or more fragments are available in the matrix

to grow the model, choose the best one and add it.
Fragments are scored according to their local
myGDT score with respect to the target�s coordi-
nates.

3.3.2. Otherwise, if possible, extend the solution model by
one residue.
a se
n gro
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3.4. Rank all obtained fragment-based solutions in terms of glo-
bal myGDT scores with respect to the target length and select
the best ones within a given tolerance (set to 1 myGDT unit
in this experiment).
t of superimposed templates. A possible fragment-based solution is
wn in both left and right (N and C-terminal) directions. Going left
taken for having the best local myGDT score with respect to the
fragment from template 2 was available. Then another fragment
ments were available (see rules 3.3.1 and 3.3.2).



Table 1
List of CASP5 targets split in domains with the best template found by
MAMMOTH to model them, the % of sequence identity and the �ln E
value, the significance of the structural similarity

Target_domain Template % seq. id. Aligned length �ln E

T0130 1lou_A 18.2 79/100 8.894
T0132 1bvq_A 17.8 123/147 14.36
T0136_1 1ef8_A 17.1 167/256 16.77
T0136_2 1ey3_A 16.5 202/264 17.12
T0137 1bwy_A 43.1 131/133 18.54
T0138 1dc8_A 15.3 121/135 15.82
T0141 1lba_# 23.5 141/187 9.996
T0142 1i9z_A 22.9 268/280 19.88
T0143_1 1agj_A 28.0 114/121 12.72
T0143_2 1qtf_A 34.8 94/95 13.13
T0146_1 1f9f_C 17.8 72/107 7.61
T0146_2 1ais_A 13 81/89 9.74
T0147 1f74_A 20.0 226/234 16.06
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3.5. Use the sequence-dependent mode of LGA to calculate
final GDT_TS scores for these selected models and store
the best obtained GDT_TS, our estimation for the best
accuracy achievable from these templates and these align-
ments.

Finally, we compare our fragment-based model to the corre-
sponding best prediction in CASP5 and also to the experimental
structure.
This protocol was implemented as a set of three Perl programs,

available from the authors:
(1) update_nrpdb.pl: to create a local copy of the non-redundant set

of PDB chains Pubs.
(2) search_templates_mammoth.pl: to scan the target against the tem-

plate library using MAMMOTH and to finally generate a list of
suitable templates.

(3) fragbench.pl: to superimpose the templates and to create a collec-
tion of fragment-based solutions evaluated in terms of GDT_TS.
The initial template superpositions and the final selected models
are printed to files in PDB format.
T0148_1 1aps_# 19.7 70/71 10.78
T0148_2 1ap8_# 16.7 86/91 9.660
T0149_1 1fts_# 25.0 187/201 15.63
T0149_2 1h7s_B 15.8 109/116 9.336
T0150 1ck9_A 33.7 96/97 14.11
T0151 3ull_B 33.8 94/106 12.58
T0153 1euw_A 31.9 127/134 16.98
T0154_1 1iho_A 49.1 175/185 22.99
T0154_2 1iho_A 34.0 97/103 14.17
T0155 1dhn_# 33.6 116/117 16.77
T0156 2bnh_# 17.2 155/156 7.896
T0157 1hjr_A 16.2 118/120 11.91
T0159_1 1ii5_A 19.7 155/167 9.517
T0159_2 1atg_# 14.3 135/142 6.744
T0161 1du0_B 17.9 55/154 6.206
T0162_1 1hu3_A 16.3 55/56 8.554
T0162_2 1flt_X 17.0 50/51 6.008
T0162_3 2mpr_A 17.9 167/168 10.10
T0165 1fj2_A 22.9 218/318 21.96
T0167 1jeo_A 37.8 170/180 20.47
T0168_1 3nul_# 16.0 125/170 5.959
T0168_2 4blm_A 17.4 134/141 6.763
T0169 1qsm_B 18.3 133/156 14.96
T0170 1hlr_A 17.4 68/69 8.295
T0172_1 1ej0_A 20.6 167/192 19.05
T0172_2 1f4i_A 23.8 44/101 5.868
T0173 1jil_A 19.1 255/287 9.329
T0174_1 1fi4_A 22.0 193/197 8.380
T0174_2 1fi4_A 16.0 154/155 8.382
T0176 1jrm_A 23.1 90/100 8.615
T0177_1 1gu9_F 40.4 52/57 7.435
T0177_2 1e8g_A 34.2 87/88 8.482
T0177_3 1gpj_A 29.0 73/75 9.984
T0178 1jcl_A 25.8 216/219 26.48
T0179_1 1inl_B 32.7 55/56 8.554
T0179_2 1inl_B 44.4 213/218 25.96
T0181 1xyp_A 11.6 110/111 5.008
T0182 1c24_A 42.7 248/249 30.61
T0183 1jcl_A 28.8 226/247 26.25
T0184_1 1jfz_A 33.8 145/165 19.57
T0184_2 1qu6_A 20.5 70/72 10.53
T0185_1 4uag_A 20.6 99/101 14.27
T0185_2 4uag_A 30.5 185/197 21.36
T0185_3 4uag_A 18.6 121/130 15.03
T0186_1 1gou_A 25.0 74/77 5.828
T0186_2 1ejr_C 15.0 231/250 18.78
T0186_3 1gkp_A 28.6 – –
T0187_1 1jji_A 24.1 176/187 9.130
T0187_2 1ej0_A 16.7 172/227 12.23
T0188 1eo1_A 24.5 105/107 14.85
T0189 1bx4_A 20.5 299/319 27.97
T0191_1 1di6_A 17.9 134/139 12.59
T0191_2 2pgd_# 26.3 120/143 15.65
T0193_1 1f8r_A 16.0 73/74 10.23
T0193_2 1e3j_A 16.8 126/130 12.89
3. Results

After creating the non-redundant set of PDB chains of

April, 2002, we ran search_templates_mammoth.pl for every

target. In the case of the small target T0186_3 our search for

templates produced no hits with �ln E scores over the thresh-

old, so we added templates 1gkp_A, 1ie7_C, 1gkr_A, 4ubp_C,

1k1d_A, templates that were used by CASP5 predictors for

this target. For the rest of targets our procedure was successful

and the best template for each of them is shown in Table 1, to-

gether with the % of sequence identity after superposing with

MAMMOTH.

We ran fragbench.pl for all 68 CASP5 targets, building

models from five residue fragments and from nine residue

fragments. The GDT-TS scores for both sets of ideal frag-

ment-based models are shown in Fig. 2. In the figure, the na-

tive target structure would have a GDT-TS of 100.00, so the

results show that even with the aid of error-free alignments

and the optimum choice of fragments, the information from

the fragment library is not sufficient to recreate the target

structure. In general, the higher the sequence identity the

higher the GDT-TS of the fragment-based model, though

the models have a wide range of GDT-TS scores. For the 9

residue fragment models, for example, GDT-TS ranges from

37.98 for target T0132 to 96.81 for target T0137. One reason

for the wide range of scores is that the structural information

required to recreate the models is not always available,

reflecting non-homogeneous distribution of structural space

within the PDB.

In Fig. 3A, the GDT-TS scores for the best predicted models

from CASP5 are superimposed on the scores for both sets of

ideal fragment-based models. Here the targets are sorted

according to sequence identity between the target and the clos-

est template (from 11.6% for T0181 to 49% for T0154_1). In

Fig. 3B, all three sets of models for all targets are replotted

with the target-template sequence identity on the horizontal

axis. Linear regression lines are also shown.

These two figures suggest that above a imaginary line of

�35% of sequence identity the best predictors are often

reaching the limits of what can be done solely with the

available structures in the database. It is in these cases

where improvements on the performances of the template-

based methods can only come from some form of ab initio

method.



Fig. 2. Here the GDT-TS scores of the models built by FRAGBENCH using fragments of size 5 and 9 are plotted against each of the CASP5 targets.
The scores are ordered by the 5 residue fragment model GDT-TS score.

Fig. 3. CASP5 performance compared to empirical template-based limits. (A) The best CASP5 predictions are shown together with the best
template-based solutions produced by FRAGBENCH, using fragments of size 5 and 9. (B) Same results plotted as a function of the % of sequence
identity to the best template, used to draw linear-correlations that meet near the 35% imaginary line. This data shows that CASP5 methods cannot
reach the fragment-based performance below the 35–40% threshold. It also shows that even minimizing alignment problems, models built from
fragments have limited quality. Note: these figures show the same trends when excluding targets labelled as New Fold and Fold Recognition
(analogy) in CASP5.
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These results also show that below this line template-based

approaches still have room for improvement with regards to

alignment accuracy and template selection.
4. Discussion

CASP blind trials for protein structure prediction methods

have identified two major sources of errors that affect tem-

plate based prediction methods: selection of incorrect tem-

plates and errors in alignments. This paper shows the limits

of template-based modelling methods in the absence of these

problems. Even with optimal selection of templates (combin-

ing various chains) and perfect quality structural alignments,

most CASP5 targets could not be predicted with GDT_TS

scores better than 70%. This result shows that the current

set of known structures is rather limited and does not contain

the complete information necessary for building template-

based models, even when the best combination of this struc-

tural information is known. In this sense the results suggest

that only additional information can overcome the limita-

tions of the available structural information, and ab initio

methods would have to be combined with fragment-based

methods to improve current performance of homology mod-

elling techniques.

On the positive side, the results of comparing CASP5 models

with the optimal multi-template models show that for the so

called easy cases with templates over 30% of sequence identity

with the query proteins, the best models are now almost as

good as the optimal multi-templates, and we are reaching the

limits of what the template-based methodology can do for

the modelling of protein main chain. On the other hand, in

the region below 30% identity the best models are far from

even the optimal model that could be obtained with the best

available structural information. It is in this region where the

problems of template identification, combination and sequence

alignments are still playing a major role.

The recent increase in growth of the structural databases

ought not only to provide templates closer to the target struc-

tures in many cases, but also ought to provide a more diverse

library of fragments for fragment-based modelling. It will be

interesting in future years to see to what extent fragment-

based modelling will benefit from the effects of this increased

pool of template information and to see whether structure pre-

diction groups can improve on the best possible template-

based model.
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