Algorithms for protein comparative modelling and some evolutionary implications

Bruno Contreras-Moreira Biomolecular Modelling Laboratory London Research Institute February 2004

overview

- 1. Acknowledgements
- 2. Introduction: what is protein comparative modelling (5 slides)
- **3.** Comparison of alignment techniques: defining domains and selecting templates (7 slides)
- **4.** Recombination of protein models: in-house and CASP5 benchmarks (17 slides)
- **5.** A relation between exonic structure of genes and protein structure: recombination of protein domains (5 slides)
- 6. Conclusions

1. Acknowledgements

I would like to thank...

- the Biomolecular Modelling Lab:
 - Paul Bates
 - Paul Fitzjohn
 - Graham Smith
 - Raphäel Chaleil
 - Páll Jónsson
 - Chris Page
 - José Jiménez
- Neil McDonald, John Sgouros, Nancy Hogg, Helen McNeill, Giampietro Schiavo and David Perkins
- María, Joana, Aphrodite, Nikolakis and Óscar
- Cancer Research UK

+FR

2. Comparative modelling

Predictive technique to build a molecular model for a sequence based on homologous proteins whose structure is known.

Template: experimentally determined protein structure stored in the Protein Data Bank.

structural significance of sequence alignments

-QTSVSPS-KVILPRGGSVLVTCSTS-CDQPKLLGIET---P-LPKKELLLPGNNRKVYE FKIETTPESRYLAQIGDSVSLTCSTTGCESP-FFSWRTQIDSPLNGKVTN--EGTTSTLT

LS--NVQE-DSQPMCYSNCPDGQSTAKTFLTV--MNPVS-FGNEHSYLCTATCESRKLEKGIQVEIYS

structural agreement = f(sequence similarity)

empirical foundations of comparative modelling

applications of protein comparative modelling (1)

applications of protein comparative modelling (2)

Depending on the sequence identity between query and template:

- > 90% virtual ligand screening
- > 40% defining antibody epitopes
- > 40% molecular replacement in X-ray crystallography
- >20% support site directed mutagenesis
- >20% fitting into low resolution electron density maps

(from Baker & Sali (2001) *Science*,294: 93-96)

3. Comparing alignment techniques

Clustalw (Gonnet)	Profile1	Profile2			
sequence to sequence	profile+ SS_q to sequence+ SS_t	profile+ SS_q to profile+ SS_t			
	<u>HHHCCCCC</u>	<u>НННННССС</u>			
	VFIWQSSW	AYLFQST-			
	AYIWQS	AYIWQS			
AYLWQSTW	AYLWQSTW	AYLWQSTW			
AYVWQS-Y	AYVWQS-Y	AYVWQS-Y			
		AYLWNSTW			
		VYVWNT-F			
	HHHHCCCC	<u>HHHHCCCC</u>			
core:					
S:/n 232843-2	232832-1	232823-0			
$\overline{q} = query, t =$	template, SS = seco	ondary structure			

alignment accuracy

A cut-off for the bit-score was found to evaluate alignments: 95% of alignments with shift-score > 0.5 have bit-scores > 2.0

% sequence identity

predictive value of bit-scores ($R^2 \sim 0.7$)

n=428 pairs of protein domains

Profile2 A Profile1 Clustalw

bit-score (bits/residue)

defining protein domains and finding templates

1) query sequence against profile library: PFAM profiles + IMPALA: 290/300

PFAM library	inclusion of NCB	low-complexity filtering	best hit = correct family
PFAM(A+B)	+	+	290/300
PFAM(A+B)	-	+	290/300
PFAM(A+B)	+	-	293/300
PFAM(A+B)	-	-	293/300

2) query sequence against database of sequences:
PFAM + PDB sequences + PSI-Blast: 300/300
plus: domain splitting

NCB = non-conserved blocks

selecting templates (1)

How often templates ranked by sequence identity yield the best models

Using our comparative modelling program 3D-Jigsaw (Bates & Sternberg (1999) *Proteins*, Suppl.3:47-54).

selecting templates (2)

Single- *vs.* Multiple-template performance using 3D-JIGSAW and optimal alignments

minimal % sequence identity to templates

DomainFishing

Contreras-Moreira & Bates (2002) *Bioinformatics*, 18:1141-1142.

4. Recombining protein models

So far we have learnt:

• Although some alignment techniques are on average better than others, none is perfect and often "worse" procedures produce better alignments.

• Sequence-based evaluators (such as bit-scores) can aid in the task of ranking alignments, but they can't resolve very similar alignments.

• Selecting templates is not trivial and therefore using only one template is not a good idea.

We concluded that we needed a way of combining different alignments and templates. This was called *in silico protein recombination* and implemented as a genetic algorithm.

a genetic algorithm applied to Comparative Modelling

•how are solutions encoded?

•genetic operators

•definition of fitness

•design of the algorithm

proteins models are implicitly coded solutions

- linear molecules: strings of residues connected by peptide bonds
- fitness = likelihood of its fold

T0134	GEP-VQNGAPEEEQLPPESSYSLLAENSYVKMTCDIRGSLQEDSQVTVAIVLENRSS
lqts_A	GSPGIRLGSSEDNFARFVCKNNGVLF-ENQLLQIGLKSEFRQNLG-RMFIFYGNKTS
88	CCCCCCCCCCCCHHHHCCCCCCEEE ECCCEEE EEEEEECCEE- EEEEEECCC

 $potential_solution_i = model_i =$

f(PDBtemplate_i, alignment_k)

recombination

model recombination(model A , model B)

do sequence_alignment(A , B); do sequence_superimposition(A , B); do refine_superimposition(A , B); do draw_crossover_point(A , B); /* out of SS? */ return create_model(A , B , crosspoint);

mutation

model mutation(model A , model B)

do sequence_alignment(A , B); do sequence_superimposition(A , B); return create_Cartesian_average_model(A , B); /* quality checks, minimization? */

parent A

parent B

sibling

protein fitness

fitness(p) = internal_contacts(p) + solvation(p)

 $\sum_{i}\sum_{j}(A_{ij}/r_{ij}^{9})-(B_{ij}/r_{ij}^{6}) \text{ (in kcal/mol)}$ where *i,j* are pairs of pseudoatoms in protein *p* and *A* and *B* are statistical potentials (Robson & Osguthorpe (1979) *J.Mol.Biol.*,132:19-51, coded by Paul Fitzjohn)

protein fitness

fitness(p) = internal_contacts(p) + solvation(p)

 $\sum_{i} (SA_{i} \cdot \Delta Gsolv_{i})$ (in kcal/mol) where *i* is a residue in protein *p*, SA is the side-chain solvent accessible area calculated by NACCESS^{*} and $\Delta Gsolv^{\P}$ is the experimental solvation free energy change for each residue type

* NACCESS (Hubbard and Thornton see http://wolf.bms.umist.ac.uk/naccess ¶ Eisenberg and MacLachlan (1986) *Nature*, **319**: 199-203.

in silico protein recombination algorithm

Contreras-Moreira, Fitzjohn and Bates (2003) J Mol Biol, 328: 593-608.

Protein recombination example: bovine profilin

SS template	ннннннннн	EEE EEEEE	EEEE	нннннн	ннннн е	EEEE	EEE EEE
dd1pne_ideal	AGWQSYVDNLMCDG	CCQEAAIVGYC	DAKYVWAATA	GGVFQSITPIEIDMI	GKDREGFFTN	GLTLGA	KKCSVIRD
dd1pne1_S	DNLMCDGCC	QEAAIVGYC	DAKYVWAATA	AGGVFQSITPIEIDMIV	GKDREGFFTN	GLTLGA	AKKCSVIRD
dd1pne2_S	AGWQSYVDNLMCDG	CCQEAAIVGYC	DAKYVWAATA	AGGVFQSITPIEIDMIV	GKDREGFF TNGLT	LGAKKCSV	/IRDSLYVD
dd1pne3_S	AGWQSYVDNLMCDG	CCQEAAIVGYC	DAKYVWAATA	AGGVFQSITPIE	LIDMIVGKDRE	GFFTNO	LTLGAKK C
dd1pne4_S	AGWQSYVDNLMCDG	CCQEAAIVGY-	CDAKYV	WAATAGGVFQSITPIE	LIDMIV <mark>G</mark> KDRE	GFFTNG	LTLGAKK C
crossover pt			x		.		

SS template	EE EEE	EEE	EEEEEE	EEEEEE	нннннннннннннн
dd1pne_ideal	SLYVDGDCTM	DIRTKSQGGEP	TYNVAVGRAGI	RALVIVMGKEG	VHGGTLNKKAYELALYLRRS
dd1pne1_S	SLYVDGDCTM	DIRTKSQGGEP	TYNVAVGRAGI	RALVIVMGKEG	VHGGTLNKKAYELALYLRRS
dd1pne2_S	GDCTM	DIRTKSQGGEP	TYNVAVGRAGI	RALVIVMGKEG	VHGGTLNKKAYELALYLRRS
dd1pne3_S	SVIRDSLYVD	GDC TMDIRTKS	Q <mark>GGEPT</mark> YNVA	VGRAGRALVIVM	SKEGVHGGTLNKKAYELALYLRRS
dd1pne4_S	SVIRDSLYVDGDCTM	DIRTKSQGGEP	TYNVAVGRAGI	RALVIVMGKEG	VHGGTLNKKAYELALYLRRS
crossover pt	· · · x · · · · · · · · · · · · · ·	. x . x			x

1pne, Cedergen-Zeppezauer et al. (1994) J.Mol.Biol.,240:459-475.

protein recombination: performance

kcal/mol/residue

protein recombination: CASP5 benchmark

CASP5: 5th Critical Assessment of techniques for protein Structure Prediction (67 proteins). Contreras-Moreira,Fitzjohn, Offman, Smith & Bates (2003) *Proteins*, 53:424-429.

> CAFASP is a web server that collects automatic predictions from servers around the world.

CASP5 example: T0192 Human acetyltransferase generation 0 •2 templates: 1QSM & 1QSO (~15%SeqID), 12 alignments •sources:3D-JIGSAW,FAMS, ESYPRED & Pmodeller

in silico Protein Recombination experiment: T0192_2

model	GDT_TS	AL_4
mod1	45	61
mod2	63	81
mod3	57	72
mod4	54	64
mod5	54	64
mod6	61	80
mod7	61	76
mod8	61	80
mod9	62	78
mod10	65	77
mod11	62	78
mod12	60	71
average	58	74
rec_8gen	61	81
bestCASP5	66	85

best model (after 8 generations)

 $AL_4 = \%(\langle 4 \text{\AA AND shift} \pm 4 \rangle)$

in silico protein recombination: CASP5 summary

- Targets with an obvious fold, assessed by Anna Tramontano (La Sapienza, Roma):
 - protein recombination is among the 10 top methods (out of ~200) in terms of alignment quality, but is worse in atomic deviation terms (RMSD).
- Fold recognition targets, evaluated by Nick Grishin (Howard Hughes Medical Institute, Dallas):
 - protein recombination is among the top 10 methods in both alignment and RMSD terms.

in silico protein recombination: evaluation

ADVANTAGES

- converges close to the best initial model in a population
- it is able to recover some alignment errors
- often last population contains alternative conformations (?)

PROBLEMS

- models in the last population have sometimes broken loops
- models need often to be minimized after the simulation
- longer **computing time** than traditional methods
- current mutation implementation does not help much

5. A relation between exonic structure of genes and protein structure (in collaboration with Páll Jónsson)

Protein set: 684 human and mouse experimental structures from the PDB (100< size <300 res) with their intron-exon boundaries mapped by aligning their amino acid sequence back to their genomic DNA sequence.

Contreras-Moreira, Jónsson & Bates (2003) J.Mol.Biol., 333:1057-1071.

Intron-exon boundaries in the context of 2^{ary} structure

Secondary structure, 3-state structure	f _{obs introns}	f _{exp introns}	Differe
			nce
C - Not in a secondary structure element	776 (32%)	544 (22%)	+43%
(loops)			
C - Residue in isolated β -bridge	29 (1%)	31 (1%)	-6%
C – Hydrogen-bonded turn	308 (13%)	288 (12%)	+7%
C – Bend	260 (11%)	265 (11%)	-2%
E - Extended β-strand	430 (18%)	537 (22%)	-20%
H - α-helix	570 (23%)	702 (29%)	-19%
H - 3_{10} helix	73 (3%)	80 (3%)	-9%
H – 5-helix	1 (0%)	0 (0%)	_

Subset of intron-	end _{obs}	end _{exp}	mid _{obs}	mid _{exp}
exon boundaries		_		_
all β -strands	184 (41%)	45 (10%)	266 (59%)	405 (90%)
conserved <i>β</i> -strands	13 (21%)	6 (10%)	49 (79%)	56 (90%)
all α-helices	114 (20%)	58 (10%)	465 (80%)	521 (90%)
conserved α -helices	15 (25%)	6 (10%)	45 (75%)	54 (90%)

Intron-exon boundaries & protein function

test	Obs	Exp
Intron-exon boundaries <7Å	55/308 (18%)	51/308 (17%)
functional sites		
Intron-exon boundaries separate	106/308 (34%)	100 (32%)
functional residues		

Intron-exon boundaries & protein recombination

PDB	annotation	Number of	Origin of
chain		templates used for	homologous
		recombination and	proteins
		sequence identity	(templates)
		range	
1a66a	Rel homology	11, 100%-23%	H.sapiens,
	domain, eukaryotic		M.musculus,
	transcription factor.		Anopheles
			gambiae
1bv8a	Alpha-2-	3, 100%-62%	H.sapiens,
	macroglobulin.		Paracoccus
			denitrificans,
			R.norvegicus
1b4qa	Glutaredoxin.	10, 100%-20%	H.sapiens,
			phage T4,
			E.coli, S.scrufa
1h4wa	Trypsin	14, 100%-38%	R.rattus,S.scruf
			a,B.taurus,
			H.sapiens,E.col
			i,
			R.norvegicus
(22)			

NOTE: all cross-overs are allowed

Intron-exon boundaries & protein recombination

Over the 22 test cases there are 71 intron-exon boundaries, of which 56 (79%) have less than 5% of recombination frequency, compared to 65% expected by chance. The probability of this being a random deviation is p=0.01 for a χ^2_{1df} .

6. Conclusions

1. Sequence alignment techniques are not perfect and, although it is possible to rank them, in certain situations "weaker" techniques can perform better than "stronger" ones.

2. Protein recombination is able to construct protein models in a robust manner, with the ability to resolve at least some alignment conflicts and therefore correct errors. Our results (and others in CASP5) suggest this combinatorial approach can be equally useful for Fold Recognition purposes.

3. Introns do not populate randomly the genes in which they live, especially when protein secondary structure is considered. The observed preferences can be exploited for protein engineering purposes.

Biomolecular Modelling Laboratory

www.bmm.icnet.uk

3D-JIGSAW

Crossover points and introns boundaries: T0192

average of 5 simulations 7 homologues < 20%SeqID origin: yeast , B.subtilis , M.tuberculosis

Nets	cape: Your	results								
File	Edit Viev	v Go C	Communicator							He
Ì 🦋	Bookmark	s 🤳 Loca	tion: http://www	.bmm.icne	t.uk/~3djig	saw/dom_f:	ish/displ	.ay2.cgi?ou	tput/J79b3137	🗸 🚺 What's Related
1 🗳	Σ 🍦	ž 🦉	1 🚮	<u>æ</u>	ÚM,	3	s.	<u>@</u> .	2	
Bad	k Forw	ard Relo	oad Home	Search	Netscape	Print	Security	Shop	Stop	
Intera	active 31)-JIGSA	W legend home	<u>disclaime</u>	er <u>contactus</u>	HHCCEE:	predicted	Helix, Coil o	Strand	

Possible :	structural
template	s in PDB

name	from	to
<u>1bza_#</u> Model!?	28	287
<u>1shv_A</u> Model!?	26	292
<u>1g56_A</u> <u>Model!</u> ?	26	292
<u>1ck3_A</u> Model!?	26	290
<u>1jtd_A</u> Model!?	27	288
<u>1fqg_A</u> Model!?	26	288
<u>1btl_#</u> Model!?	26	290
<u>1bt5_A</u> Model!?	26	290
<u>1erq_A</u> Model!?	26	288

truncated alignments? PDB code [1bza chain]# first residue [- last [- last [- align the query to this PDB!