Bruno Contreras-Moreira contrera@ccg.unam.mx

Centro de Ciencias Genómicas Universidad Nacional Autónoma de México

ISMB 2006, Fortaleza, Brasil

◆□▶ ◆□▶ ★∃▶ ★∃▶ = ● ●

Outline

1 Introduction

2 DNASITE algorithm

Exploring existing complexes

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

DNASITE flowchart

3 Example

4 Benchmark

5 Summary

6 Acknowledgements

Introduction

Purpose of this work

 Idea: identification of regulatory sequences by comparative modelling of protein-DNA complexes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction

Purpose of this work

 Idea: identification of regulatory sequences by comparative modelling of protein-DNA complexes.

Motivation:

Introduction

Purpose of this work

 Idea: identification of regulatory sequences by comparative modelling of protein-DNA complexes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Motivation:

- design experiments
- improve description of regulatory networks

Background

Related methods:

Background

Related methods:

use collections of known binding sites (MEME,consensus)

Background

Related methods:

use collections of known binding sites (MEME,consensus)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

do not require previous knowledge of sites:

Background

Related methods:

use collections of known binding sites (MEME,consensus)

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

- do not require previous knowledge of sites:
 - phylogenetic footprinting

Background

Related methods:

use collections of known binding sites (MEME,consensus)

- do not require previous knowledge of sites:
 - phylogenetic footprinting
 - oligo analysis

Background

Related methods:

- use collections of known binding sites (MEME,consensus)
- do not require previous knowledge of sites:
 - phylogenetic footprinting
 - oligo analysis

DNASITE exploits the Protein Data Bank and builds on:

Background

Related methods:

- use collections of known binding sites (MEME,consensus)
- do not require previous knowledge of sites:
 - phylogenetic footprinting
 - oligo analysis
- DNASITE exploits the Protein Data Bank and builds on:
 - previous work on crystallographic complexes (Kono & Sarai, Paillard & Lavery)

Background

Related methods:

- use collections of known binding sites (MEME,consensus)
- do not require previous knowledge of sites:
 - phylogenetic footprinting
 - oligo analysis
- DNASITE exploits the Protein Data Bank and builds on:
 - previous work on crystallographic complexes (Kono & Sarai, Paillard & Lavery)
 - protein-DNA recognition codes (Mandel-Gutfreund & Margalit, Luscombe & Thornton)

Protein-DNA recognition matrices

# ln	[fij/(f	i x fj))]			
#Man	del-Gut	freund	and Mar	galit (1998)	NAR,26:	2306-2312
#	G	Α	Т	C		
GLY	-3.93	-3.93	-3.93	-3.93		
ALA	-3.93	-3.93	0.66	-3.72		
VAL	-3.93	-3.93	-0.17	-3.57		
ILE	-3.93	-3.93	0.65	-3.44		
LEU	-3.93	-3.93	-0.94	-3.93		
PHE	-3.93	-3.93	-0.81	-0.12		
TRP	-1.96	-3.93	-1.96	-3.93		
TYR	-2.87	-2.87	0.54	0.13		
MET	-2.58	-0.28	0.42	-0.28		
CYS	-2.23	0.07	-2.23	0.07		
THR	-3.46	-0.06	-0.06	-1.16		
SER	0.42	-0.68	-0.28	-0.68		
GLN	-0.09	1.16	0.31	-3.09		
ASN	0.48	1.93	0.71	0.71		
GLU	-3.93	-1.24	-3.93	0.55		
ASP	-3.93	-3.37	-3.93	1.01		
HIS	1.56	0.46	0.87	-0.23		
ARG	2.74	0.34	1.25	-3.93		
LYS	2.16	-0.08	0.21	-3.93		
PRO	-3.93	-3.93	-0.30	-3.29		

・ロト・日本・モート モー うへで

DNASITE algorithm

Exploring existing complexes

Comparative modelling of protein-DNA complexes

 Previous structural approaches require crystallographic protein-DNA complexes.

DNASITE algorithm

Exploring existing complexes

Comparative modelling of protein-DNA complexes

- Previous structural approaches require crystallographic protein-DNA complexes.
- We ask whether comparative/homology models can also be used:

DNASITE algorithm

Exploring existing complexes

Comparative modelling of protein-DNA complexes

- Previous structural approaches require crystallographic protein-DNA complexes.
- We ask whether comparative/homology models can also be used:
 - do homologous DNA-binding proteins conserve their docking geometry?

DNASITE algorithm

Exploring existing complexes

Comparative modelling of protein-DNA complexes

- Previous structural approaches require crystallographic protein-DNA complexes.
- We ask whether comparative/homology models can also be used:
 - do homologous DNA-binding proteins conserve their docking geometry?
 - can we identify modelled protein residues that contact DNA?

Exploring existing complexes

Interface comparison

interface atoms (< 12Å):

・ロト ・四ト ・ヨト ・ヨト

- (+) CA
 (-) N1/N9

DNASITE algorithm

Exploring existing complexes

Interface comparison

■ interface atoms (< 12Å):</p>

- (+) CA
 (-) N1/N9
- RMSD calculated over MAMMOTH superimpositions

DNASITE algorithm

Exploring existing complexes

Homologous protein-DNA interfaces are conserved

Median values for 442 pairs of superimposed PDB complexes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

DNASITE algorithm

Exploring existing complexes

SCOP folds show different interface conservation

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト ― ヨー つくぐ

DNASITE algorithm

Exploring existing complexes

Contact side chains can be modelled

987 base H-bonding residues modelled by SCWRL with templates >= 30%ID

DNASITE algorithm

Exploring existing complexes

Can we model protein-DNA complexes?

do DNA-binding proteins conserve their docking geometry?

YES, as a function of % sequence identity

can we identify modelled protein residues that contact DNA?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

YES, at least we can model most H-bonding residues

DNASITE algorithm

DNASITE flowchart

How DNASITE builds comparative models

 scan input protein sequence against library of PDB complexes (PSI-BLAST)

DNASITE algorithm

DNASITE flowchart

How DNASITE builds comparative models

 scan input protein sequence against library of PDB complexes (PSI-BLAST)

■ for each template PDB:

DNASITE algorithm

DNASITE flowchart

How DNASITE builds comparative models

- scan input protein sequence against library of PDB complexes (PSI-BLAST)
- for each template PDB:
 - build comparative complex core

(日)、

DNASITE algorithm

DNASITE flowchart

How DNASITE builds comparative models

- scan input protein sequence against library of PDB complexes (PSI-BLAST)
- for each template PDB:
 - build comparative complex core
 - model mutant protein side-chains (SCWRL)

DNASITE algorithm

DNASITE flowchart

How DNASITE builds comparative models

distance < 4.5Å from pur/pyr ring atoms, PSI-BLAST IC > 0.3

- scan input protein sequence against library of PDB complexes (PSI-BLAST)
- for each template PDB:
 - build comparative complex core
 - model mutant protein side-chains (SCWRL)
 - identify DNA-contacting residues

- 日本 本語 本 本 田 本 本 田 本

DNASITE algorithm

DNASITE flowchart

How DNASITE builds comparative models

 $s_i + N_{template} + P_{model} = PN_i$

- scan input protein sequence against library of PDB complexes (PSI-BLAST)
- for each template PDB:
 - build comparative complex core
 - model mutant protein side-chains (SCWRL)
 - identify DNA-contacting residues
 - thread all? possible DNA sequences:

DNASITE algorithm

DNASITE flowchart

How DNASITE builds comparative models

 scan input protein sequence against library of PDB complexes (PSI-BLAST)

- for each template PDB:
 - build comparative complex core
 - model mutant protein side-chains (SCWRL)
 - identify DNA-contacting residues
 - thread all? possible DNA sequences:
 - calculate protein-DNA agreement score (family corrected?)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $score(P, N_i) =$ $\sum \sum match(P_j, N_{ik}, matrix)$

DNASITE algorithm

DNASITE flowchart

How DNASITE builds comparative models

 scan input protein sequence against library of PDB complexes (PSI-BLAST)

- for each template PDB:
 - build comparative complex core
 - model mutant protein side-chains (SCWRL)
 - identify DNA-contacting residues
 - thread all? possible DNA sequences:
 - calculate protein-DNA agreement score (family corrected?)
 - estimate DNA deformation cost (X3DNA)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $deform(s_i, N_{template}) = f(s_i, Olson, geom(N_{template}))$

DNASITE algorithm

DNASITE flowchart

How DNASITE builds comparative models

- scan input protein sequence against library of PDB complexes (PSI-BLAST)
- for each template PDB:
 - build comparative complex core
 - model mutant protein side-chains (SCWRL)
 - identify DNA-contacting residues
 - thread all? possible DNA sequences:
 - calculate protein-DNA agreement score (family corrected?)
 - estimate DNA deformation cost (X3DNA)

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

rank DNA sequences (p-value)

DNASITE example: E.coli SoxS

model 1bl0 A 116 DNACOMPLEX 41 9e-25 SKWYLQRMFRTVTHQTLGDYIRQRRLLLAAVELRTTERPIFDIAMDLGYVSQQTFSRVFR auerv _template SKWHLQRMFKKETGHSLGQYIRSRKMTEIAQKLKESNEPILYLAERYGFESQQTLTRTFK _stats: 7/7 aligned contacting residues, 6/7 conserved <- interface identity _predicted contacting residues in this model: contact GLN A 92 (0) 6 T _contact ARG A 96 (0) 39 G _contact SER A 95 (1) 7 T contact ARG A 96 (0) 9 G _contact GLN A 45 (0) 17 T _contact ARG A 100 (1) 38 T contact GLN A 92 (0) 42 A contact ARG A 46 (0) 30 C _contact ARG A 46 (0) 19 G contact GLN A 45 (0) 16 G contact TRP A 42 (0) 31 C _contact ARG A 46 (0) 29 G _contact GLN A 91 (0) 5 T _oligo length = 1 (9), possible mutations = 4 _template reference: S.RHEE et al. PROC.NAT.ACAD.SCI.USA V. 95 10413 1998 predicted binding sites and their scores (MAXPVALUE=0.1): = NNNNNTTTNGCCNNNNGTGGCNNN +2.60 0.67 2.50e-01 = NNNNNTTTNGCANNNNGTGGCNNN +1.12 0.00 5.00e-01 # original complex DNA sequence|||.||+....|||||... residues c84.c85.c88.c89.c89.m93.c38.c38.c35.c39.c39. DNAID 9/11

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

SoxS consensus of two models (1)

> SoxS number of comparative complexes = 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

model 1d5y_A 288 DNACOMPLEX 55 2e-27
_query SKWYLQRWFRTVTHQTLGDVIRQRRLLLAAVELRTTERP
_template SKWHLQRMFKDVTGHAIGAYIRARRLSKSAVALRLTARP
_contacts *.**.*.

Example

SoxS consensus of two models (2)

> SoxS number of comparative complexes = 2

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

consensus superposition of 2 best comparative footprints _PDB consensus superposition file SoxS_consensus.pdb = NNNNNNNNNNNNGCGCNN

= NNNNNNNNNNNGTGCTGNN

Benchmark with E.coli regulators in RegulonDB

Data set

85 DNASITE complexes with reported sites (9 SCOP folds)

DNASITE parameter sets

- default: MG matrix, 3contacts/res,deform 1.6kcal/mol
- **CM:** matrix built by the author based only on distance cut-offs
- sc3: uses SCWRL3.0 instead of version 2.7
- Df1, Df2, Df3: deform 1, 2, 3kcal/mol
- **C1:** 1contact/res
- M: conservative, models only mutated side chains
- **F:** uses family-specific correction
- P: P-value cut-off for threaded sequences, original DNA kept

Comparing DNASITE footprints to known binding sites

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

_pa	tser	DNAS	ITE	matr	ix f	or So	oxS									
A	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
CΙ	0	0	0	0	0	2	1	0	0	0	0	0	0	0	0	2
GΙ	0	0	0	0	2	0	0	0	0	0	0	2	0	2	2	0
ΤI	2	2	2	0	0	0	0	0	0	0	0	0	2	0	0	0

Comparing DNASITE footprints to known binding sites

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

_pat	ser	DNASI	ΓTE	matri	ix fo	or So	oxS									
AI	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
CΙ	0	0	0	0	0	2	1	0	0	0	0	0	0	0	0	2
GΙ	0	0	0	0	2	0	0	0	0	0	0	2	0	2	2	0
Τ	2	2	2	0	0	0	0	0	0	0	0	0	2	0	0	0

PATSER search

Comparing DNASITE footprints to known binding sites

_pats	ser l	DNASI	ΙTΕ	matr	ix fo	or So	oxS									
A	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
CΙ	0	0	0	0	0	2	1	0	0	0	0	0	0	0	0	2
GI	0	0	0	0	2	0	0	0	0	0	0	2	0	2	2	0
ΤI	2	2	2	0	0	0	0	0	0	0	0	0	2	0	0	0

PATSER search

activator -72.5 tgcgcttcttGTTTGGTTTTCGTGCCAtagttcgtg activator -61.5 tccactttcaTGTAGCACAGTGGCGAGTcctgctgtt activator -56.5 gtttaacctgTTGCATTAATTGCTAAAAgctataactg activator -60.5 tcatcgggctATTTAACCGTTAGTGCCTcctttctctc activator -40 cgcggcaaaaGCAGAAACTGTAAAACGCagcagtagca ...

Comparing DNASITE footprints to known binding sites

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

_pat	ser 1	DNASI	ITE :	matri	ix fo	or So	oxS									
A	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
CΙ	0	0	0	0	0	2	1	0	0	0	0	0	0	0	0	2
GI	0	0	0	0	2	0	0	0	0	0	0	2	0	2	2	0
ΤI	2	2	2	0	0	0	0	0	0	0	0	0	2	0	0	0

PATSER search

activator -72.5 tgcgcttcttGTTGGTTTTCGGGCdtatgttcgtg activator -61.5 tccactttcaTGTAGGACAGGTGGCGAGTcctgctcgtt activator -56.5 gtttaacctgTTGCATTAATTGGTAAAgctataactg activator -60.5 tcatcgggctATTTAACGGTTAGTGCCTcctttctctc activator -40 cgcggcaaaaGCAGAAACTGTAAAACGCagcagtagca ...

how many sites are recovered?

Comparing DNASITE footprints to known binding sites

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

_pats	ser l	DNASI	ΙTΕ	matr	ix fo	or So	oxS									
A	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
CΙ	0	0	0	0	0	2	1	0	0	0	0	0	0	0	0	2
GI	0	0	0	0	2	0	0	0	0	0	0	2	0	2	2	0
ΤI	2	2	2	0	0	0	0	0	0	0	0	0	2	0	0	0

PATSER search

activator -72.5 tgcgcttcttGTTTGGTTTTCGTGCGAtatgttcgtg activator -61.5 tccactttcaTGTAGCACAGTGCGAGTcctgctcgtt activator -56.5 gtttaacctgTTGCATTAATTGCTAAAAgctataactg activator -60.5 tcatcgggctATTTAACGCTTAGTGCCTcctttctctc activator -40 cgcggcaaaaGCAGAAACTGTAAAACGCagcagtagca ...

how many sites are recovered?

Benchmark results

params	def	СМ	sc3	Df1	Df2	c1	М	F	P10 ⁻²	P10 ⁻³	MF	FP10 ⁻⁴
%sites	94	90	94	95	94	<u>98</u>	97	93	93	94	96	<u>97</u>
−ĪnP	4.7	4.5	4.6	4.7	4.6	4.3	4.6	4.8	4.5	4.4	4.6	4.4
signif	1.5	1.3	1.7	1.9	1.5	2.1	2.4	1.8	1.6	2.0	2.5	2.9

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Benchmark logos (1)

P10 ⁻⁴	MF	FP10 ⁻⁴	wconsensus							
х,у	х,у	х,у	x=%sites,y=score							
		(%ID,%IID)	< □ >	< 🗗 🕨	<≣	•	≣⇒	- 4	0) 2 (~

Benchmark logos (2)

P10 ⁻⁴	MF	FP10 ⁻⁴	wconsensus]						
х,у	х,у	х,у	x=%sites,y=score]						
		(%ID,%IID)	Image: A	< 🗗 ►	< ≣	•	.∢ ≣	•	- æ	

Summary

Protein-DNA complexes are conserved in evolution; this allows us

(ロ)、(型)、(E)、(E)、 E、 の(の)

Summary

Protein-DNA complexes are conserved in evolution; this allows us

・ロト・日本・モート モー うへで

 to build comparative models of DNA-binding proteins that drive

Summary

Protein-DNA complexes are conserved in evolution; this allows us

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- to build comparative models of DNA-binding proteins that drive
- the prediction of their recognised DNA sequences

Summary

Protein-DNA complexes are conserved in evolution; this allows us

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- to build comparative models of DNA-binding proteins that drive
- the prediction of their recognised DNA sequences

However,

Summary

Protein-DNA complexes are conserved in evolution; this allows us

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- to build comparative models of DNA-binding proteins that drive
- the prediction of their recognised DNA sequences

However,

DNASITE has many parameters that need tuning.

Summary

- Protein-DNA complexes are conserved in evolution; this allows us
- to build comparative models of DNA-binding proteins that drive
- the prediction of their recognised DNA sequences

However,

- DNASITE has many parameters that need tuning.
- Our prediction ability is limited, as the performace improves when the conserved part of templates is inherited.

-Acknowledgements

URL and acknowledgements

I would like to thank: Julio Collado-Vides Marc Parisien Xiangjun Lu Cei Abreu-Goodger Pierre-Alain Branger Martín Peralta Heladia Salgado and UNAM

http://www.ccg.unam.mx/dnasite

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○