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Abstract

Protein comparative modelling (CM) is a predictive technique to build an atomic model

for a polypeptide chain, based on the experimentally determined structures of related pro-

teins (templates). It is widely used in Structural Biology, with applications ranging from

mutation analysis, protein and drug design to function prediction and analysis, particu-

larly when there are no experimental structures of the protein of interest. Therefore, CM

is an important tool to process the amount of data generated by genomic projects. Several

problems affect the performance of CM and therefore solutions for them are needed to

increase its applicability. In this work different algorithms and approaches were tested

with this aim, particularly to help in template selection and alignment, and some useful

insights were obtained.

First, this work describes the development of DomainFishing, a tool to split protein

sequences into functionally and structurally defined domains and to align each of them

to the available templates. The performance of our approach is benchmarked and some

problems and possible developments are identified. When comparing different alignment

procedures none of them is found to be consistently superior, suggesting that a combina-

tion of several could be an advantage. Driven by these ideas and the fact that selecting

templates can be a difficult problem, a new modelling approach is designed and tested.

This algorithm uses crossover, mutation and selection within populations of protein mod-

els generated from different templates and alignments to obtain recombinant structures

optimised in terms of fitness. Despite our simple definition of fitness, the procedure

is shown to be robust to some alignment errors while simplifying the task of selecting

templates, making it a good candidate for automatic building of reliable protein models.

In-house benchmarks of the method show its strengths and limitations. The method was

also benchmarked during the fifth Critical Assessment of techniques for protein Struc-

ture Prediction (CASP5), in which its perfomance was encouraging both for comparative

modelling and fold recognition targets, among the top 20 predictors. Finally, we present

some data to support a possible evolutionary feedback mechanism between protein struc-

ture and gene structure, using human and murine genomic data, structural data from the

Protein Data Bank and the protein recombination methodology. This may have some

implications for understanding protein evolution and protein design, which are discussed.
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Chapter 1

Introduction

A monkey is a machine that preserves genes up trees, a fish is a machine that

preserves genes in water; there is even a small worm that preserves genes in

German beer mats. DNA works in mysterious ways.

RICHARD DAWKINS

What about proteins? According to the Central Dogma of Molecular Biology, genes

are just portions of double-stranded molecules of deoxyribonucleic acid (DNA), but their

information must be faithfully transcribed to single-stranded ribonucleic acid (RNA) molecules,

and finally translated to proteins, to be used. Proteins are polymers of amino acids whose

composition is encoded in genes. While genes have limited direct influence on cellular

processes, proteins are responsible for the shape and structure of cells and serve as the

main instruments for molecular recognition and catalysis of chemical reactions. Under-

standing proteins is therefore essential to understand cellular mechanisms, and in general,

to understand life.

Figure 1.1: The Central Dogma of Molecular Biology. Portions of DNA sequence are copied into transient

RNA molecules. This messenger RNA drives protein synthesis.

Proteins are encoded in genes using an universal code, the genetic code, deciphered in

the early 1960s. Each gene precisely defines the amino acid sequence of a protein, allow-
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ing the cell machinery to synthesise proteins following the genetic recipe. This synthesis

consists of covalently bonding amino acids on a one by one basis to a growing polypeptide

chain. Finally, the chain must adopt the right shape, called the native state, to be func-

tional in the cellular context. This is the folding pathway, which builds compact protein

domain(s) from a linear polypeptide chain by forming non-covalent interactions. When a

protein unfolds, in a process called denaturation, its covalent backbone structure remains

intact, the sequence of amino acids is still the same, but loses its biological activity. Thus,

the three-dimensional structure of a protein determines its function.

In small proteins, as shown experimentally by (Anfinsenet al., 1961), the denatura-

tion reaction is reversible(Dobson & Karplus, 1999). For example, unfolded ribonuclease

(an enzyme that cleaves RNA molecules) can fold againin vitro just by removing the de-

naturing agents. This simple experiment shows that the folding reaction for ribonuclease

is autonomous: its fold is a consequence of its sequence. For many other proteins, things

are more complex. For instance chaperonins (another class of proteins) may be required

for the correct folding reaction (Hartl & Hayer-Hartl, 2002). In either case, the folding

process takes between 0.1 and 1000 seconds (Branden & Tooze, 1999). This short time

suggests that the folding process is not a blind exploration, since that would require in the

order of 1050 years to complete for a medium size protein (this is known as the Levinthal

paradox).

The folding process is important for our understanding of proteins and for the possible

applications of proteins in technology. But despite considerable efforts over more than 40

years, the folding process remains an unsolved problem. There is no efficient algorithm to

accurately fold a polypeptideab initio, despite the fact that computers are, at least, dou-

bling their speed every two years. Reasonably accurate protein models can be obtained,

though, by using related experimental information together with comparative modelling

algorithms. The main motivation of this thesis is to improve on these comparative meth-

ods to build molecular models of proteins, particularly to investigate the function and

evolution of many proteins found in large-scale sequencing projects for which no experi-

mental data is available. Due to the amount of data and the calculations usually required,

these methods can only be implemented as computer programs.
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1.1 Protein structure and function

The structural features of folded proteins can be analysed in a hierarchy of complexity

consisting of up to four layers. The primary structure is the simplest, represented by the

amino acid sequence; the quaternary structure is the most complex, as spatial arrange-

ments of different polypeptide chains occur at this level. Here they are briefly explained.

1.1.1 Primary structure

The primary structure of a protein is the linear sequence of amino acids as codified by

the corresponding gene. To be more precise, an expressed gene is transcribed to com-

pose a messenger RNA (mRNA). This molecule contains that gene’s particular sequence

of nucleotides, using an alphabet of four different nucleotides. The translation machin-

ery searches for an open reading frame within the mRNA and starts protein synthesis

by adding one amino acid every three RNA nucleotides, according to the genetic code.

The mRNA also contains information to stop the synthesis. The genetic code is almost

universal and the general mechanism is conserved in every organisms, although there are

differences between prokaryotes and eukaryotes. In many cases, mostly in eukaryotes,

the mRNA must be processed before translation since it containsintrons, fragments that

are not supposed to be translated. They must be removed to putexonstogether in a linear

molecule (see Section1.1.5).

There are 20 naturally occurring amino acids and they share a common composition

(see Figure1.2): an amino group and a carboxyl group joined by a single carbon, known

as theα carbon, from which different side-chains are attached. In the case of Glycine, the

side-chain is a single hydrogen atom.

A polypeptide chain containsn amino acids forming covalent peptide bonds between

the carboxyl group of residuei−1 and the amino group of residuei, as shown in Figure

1.3. Due to its delocalised nature, this bond is rigid and planar. The bond immediately

before the peptide bond can rotate, as well as the bond immediately after. The angles

of rotation of these two bonds are calledφ (phi) andψ(psi). The backbone of a protein

is the polypeptide chain after stripping the side-chains, and can be accurately described

in terms ofφ ,ψ angles. The conformation of the backbone is dictated mainly by the

different chemical properties of the side-chains and their interactions with the backbone.

Side-chains can be classified as non-polar, polar and charged.
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(a) (b)

Figure 1.2: The general structure of amino acids. (a) Description of groups bonded to theα carbon.

Side-chain atoms are named with Greek letters following theα carbon. The first carbon of the side-chain

is thus theβ carbon, or simplyCβ . (b) Stereochemistry of amino acids, with the H atom pointing out the

plane. Natural amino acids are L stereoisomers (that rotate plane polarized light to the left). Using the

CORN rule, in L amino acids the path from CO to N passing through R is done clockwise. (Taken from

http://web.mit.eduandhttp://www.friedli.com)

Figure 1.3: The peptide bond. (Taken fromhttp://www.friedli.com)

1.1.2 Secondary structure

To neutralise the polar charges of the backbone, proteins adopt conformations that max-

imise local interactions through hydrogen bonds. There are two main types of secondary

structure (SS) found in proteins:α-helices (right handed) andβ -strands, as predicted by

Ramachandran & Sasisekharan(1968) by studying the sterical limitations to theφ ,ψ rota-

tion. There are other less represented secondary structures, such as theβ -turns (Hutchin-

son & Thornton, 1994), but more importantly, there are regions in proteins without a

regular secondary structure. They are called genericallyloops, but there is no precise def-

inition for them.

In α-helices, carboxyl and amino groups of residuesi and i + 4 form hydrogen bonds

to complete one turn every 3.6 residues. Helices comprise continuous regions in the se-

http://web.mit.edu
http://www.friedli.com
http://www.friedli.com
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quence, requiring at least 4 residues.β -sheets are built from a combination of several

regions of the polypeptide chain, unlike helices, calledβ -strands. Strands are usually

from 5 to 10 residues long and are in an almost fully extendedφ ,ψ conformation. Ad-

jacent strands align forming hydrogen bonds between carboxyl and amino groups. The

formation of secondary structure depends to a large extent on the primary structure, since

some residues favour the formation of helices or strands and others favour loops. Indeed

sequence information is enough to predict secondary structure with remarkable accuracy

(check for examplehttp://cubic.bioc.columbia.edu/eva(Eyrichet al., 2001)) or even fold-

ing rates for simple proteins (Gonget al., 2003).

1.1.3 Tertiary and quaternary structure

Most proteins form compact globules, usually consisting of secondary structure elements

connected by loops (see Section1.1.4 for non-globular proteins). This folding unit is

called adomain. The interior of a domain contains mainly hydrophobic side-chains,

whilst loops tend to be exposed to the solvent (Branden & Tooze, 1999). Nearly all

protein structures solved so far show this trend and indeed it has been proposed that bury-

ing hydrophobic parts of proteins is the main driving force in folding (Dill , 1990). Apart

from hydrophobic interactions, there are other interactions stabilising the tertiary structure

(Lehninger, 1982):

• Hydrogen bonds between adjacent loops.

• Ionic interactions between oppositely charged side-chain groups (salt bridges).

• Disulfide bridges between cysteine residues close in space. Specific enzymes may

assist in this task.

The native tertiary structure of a protein is the stablest form in solution but is not rigid.

Many proteins exhibit flexibility and indeed their function may depended on conforma-

tional changes.

Domains are also the functional units of proteins, although a polypeptide chain may

have several domains. Sometimes domains are only active in their biological context

when they form multimeric complexes. These specific associations of identical domains

occur at the quaternary structure level. For example, haemoglobin is a tetramer in which

monomers work cooperatively (See Figure1.4).

http://cubic.bioc.columbia.edu/eva
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Figure 1.4: Haemoglobin tetramer. Secondary structure elements (helices) and globular domains (two

green and two blue) can be identified. Associated heme groups are shown in black. (Taken fromhttp://www-

cryst.bioc.cam.ac.uk)

It is important to note that proteins with significant similarity at the sequence level

have similar tertiary structures. However, structural similarity can often be mantained

between evolutionarily related proteins despise the loss of significant similarity at the se-

quence level.

1.1.4 Fibrous and membrane proteins

Fibrous proteins are structural support materials, usually built up from long fibers. Instead

of being made of compact domains, they form polymers by cross-linking or interleaving

monomers. Examples are keratin, collagen and silks. Keratin is made of coiled-coil he-

lices, collagen is a triple helix (made of proline-rich helices) and silk is a fiber ofβ -sheets.

Organelles and cell membranes incorporate protein molecules, either spanning the mem-

brane or anchoring to it. Because these proteins are functional on the membrane, and

because their fold is stabilised by the lipid interactions, it is often difficult to determine

their structure outside the membrane context. For this reason our structural knowledge

about membrane proteins is relatively poor. However, we do know that membrane span-

ning proteins can be made ofα-helices, in the case of bacteriorhodopsin, orβ -sheets, in

the case of porins. Membrane proteins still represent a technical challenge.

1.1.5 Evolution of proteins: introns and exons

In 1977 Phillip Sharp and Richard Roberts found that eukaryotic genes can be split up by

non-coding DNA segments, that are removed after transcription (see Figure1.5). Wal-

http://www-cryst.bioc.cam.ac.uk
http://www-cryst.bioc.cam.ac.uk
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ter Gilbert coined the terms for these segments,introns, interrupting the codingexons

(Gilbert, 1978). This discovery led to a search to see how prevalent they are. Introns

are widespread in eukaryotes but they are quite rare in prokaryotes. This has prompted

speculation about the evolution of organisms in general and the role introns may have in

it.

Figure 1.5: Splicing of mRNA: removing of introns. Eukaryotic genes can be viewed as arrays of coding

segments (exons, shown as E1,E2 & E3) that can be split by non-coding segments (introns, I1 & I2). Introns

are usually removed during mRNA processing, before translation takes place, and therefore do not code for

any part of the new protein molecule.

There are several types of introns, but basically some are auto-splicing and some are

spliced by specific cell machinery. Either way, most prokaryotes lack them, with the

remarkable exception of some archeobacteria, supposed to be really ancient forms of life.

These facts allow two contradictory theories to coexist: theintrons-lateand theintrons-

early (Stoltzfuset al., 1994).

The introns-early theory proposes that:

1. Exons are the descendants of ancient mini-genes and introns are the descendants of

the spacers in between.

2. Contemporary proteins were first assembled from sets of exons.

3. The machinery of splicing originated in an ancient RNA world.

4. Introns were lost completely from bacteria as well as several protists groups.

In contrast, the introns-late theory states that:

1. Split genes arise from uninterrupted genes by insertion of introns.

2. Contemporary proteins probably first arose without the participation of introns.

3. The spliceosome machinery originated from fragmented self-splicing introns.
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4. Spliceosomal introns never existed in the ancestors of today’s organisms that lack

them.

Conservation studies across species support the existence of early introns, conserved

throughout evolution. On the contrary, non-conserved introns are more likely to habe been

acquired more recently (Fedorovet al., 2001, 2002). To enhance their models, evidence

from protein structure analysis has also been used by supporters of both ideas (Stoltzfus

et al., 1994; de Souza.et al., 1996, 1997), so that it is still not clear whether these theories

are complementary or contradictory, though both seem to be possible, in the view of

de Souza.et al. (1998).

1.2 Experimental methods for determination of protein

structure

The two main techniques for experimental determination of protein structure are X-ray

crystallography and nuclear magnetic resonance (NMR). Both methods collect atomic in-

formation with coordinate errors below 3Å (Rhodes, 2000). Complementary techniques

can also be used, such as circular dichroism spectroscopy, to get information about the

secondary structure content in a protein (Johnson, 1990). A different set of techniques are

those related to electron microscopy and tomography, which can obtain images of large

molecular complexes, membrane proteins or even virus capsids. The resolution of struc-

tures built with these developing techniques can be as good as 3.5Å (Hendersonet al.,

1990), but falls usually in the range 8-20Å. Other techniques can be used to obtain valu-

able structural information, such as mass spectroscopy, fluorescence resonance energy

transfer techniques, site-directed mutagenesis, yeast two-hybrid assays or protein arrays

(Saliet al., 2003).

1.2.1 X-ray crystallography

At present, this is the main experimental technique used in Structural Biology. Around

85% of all solved protein structures have been obtained using this technique. The tech-

nique basically consists of growing crystals of the protein of interest and subsequently

using them to diffract a X-ray beam. The diffraction patterns are recorded and used to

reconstruct the three-dimensional structure of the protein, by applying Bragg’s law and

Fourier transformations. The quality of the crystals directly affects the quality of the mod-

els derived from them, and sometimes flexible parts, such as exposed loops, cannot be re-
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solved at all. The main advantage of this approach is the accuracy of the models obtained.

The best X-ray models can have average atomic errors well under 1Å, making them ideal

for rational drug design experiments. The main difficulty is the need to grow ordered pro-

tein crystals, making this step the bottleneck of the whole procedure. The same protein

can be crystallised in different conditions and crystal lattices, yielding molecular models

that deviate, on average, 0.6Å on their backbone coordinates (Montelioneet al., 2000).

There are currently international large-scale efforts to solve protein structures, the so

called Structural Genomic projects (see1.6).

1.2.2 NMR

This technique is based on the magnetic moments of some atomic nuclei such as1H,
13C,15N,31P. If proteins containing these isotopes are analysed under a magnetic field, the

chemical environment of atoms containing these nuclei can be probed and inter-atomic

distances in the molecule derived. Sequential assignment methods developed by Wütrich

and his group (see for example (Wagner & Wuthrich, 1982)) map distance constraints

to the sequence and, finally, three-dimensional models based on them are built. Usually

a set of different models can be obtained, all of them compatible with the experimental

data. When comparing NMR models with models obtained by X-ray crystallography,

they usually show backbone root mean square deviations (RMSD) around 1Å(Shaanan

et al., 1992).

The main limitations of NMR are obtaining highly concentrated protein solutions at acidic

pH values and solving proteins longer than 300 residues, although recent achievements,

such as the analysis of the GroEL complex (Fiauxet al., 2002), suggest that large sizes

are becoming less of a problem. The major advantage is that NMR is more suitable than

X-ray crystallography to study dynamic processes in proteins.

1.3 Theoretical methods to model protein structure and

dynamics

Before some of the methods are introduced, it is important to underline the importance of

protein databases, on which many of them rely.
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1.3.1 Databases

There is a wealth of knowledge that has been accumulated over the years about proteins.

Sequence, enzymatic activity, phenotypes, mutations, evolutionary analysis are all data

that can be used to understand a protein’s structure and function. Many databases have

been constructed to organise this data and allow easy access through the Internet. Here

the data resources most extensively used in this work are presented. The URLs for these

resources can be found in AppendixB.

Protein Data Bank (PDB)

The Protein Data Bank is a worldwide repository for the processing and distribution of

three-dimensional biological macromolecular structure data (Bermanet al., 2000). As of

April 2003 it contained 20473 structures obtained mainly by X-ray or NMR technologies.

The PDB also contains theoretical molecular models.

Structural Classification of Proteins (SCOP)

The SCOP database, created by manual inspection and automated methods, is a hier-

archical database that aims to provide a detailed and comprehensive description of the

structural and evolutionary relationships between all proteins whose structure is known

(Murzin et al., 1995). As such, it is a valuable resource to accompany the PDB. The

CATH Protein structure classification (Orengoet al., 1997) is a similar resource but has

not been used in this work.

Sequences for SCOP domains can be obtained from ASTRAL (Brenneret al., 2000), as

well as non-redundant subsets.

Protein families database (PFAM)

Pfam is a large collection of multiple sequence alignments covering many common pro-

tein domains and families. Each Pfam family contains a multiple alignment, domain

architecture, information about species distribution, links to other databases and known

protein structures from the PDB (Batemanet al., 2002). Families are generated by extend-

ing a hidden Markov model (Baldi et al., 1994; Eddy, 1996) of a manually aligned group

of amino acid sequences, theseed(see also Section2.1.3). This set is called Pfam-A and

contains 5193 families in its 8.0 release (February,2003). To further increase the coverage

of sequences, the Pfam team provide an automatically generated supplement called Pfam-

B, containing a large number of small families taken from the ProDom database (Corpet
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Figure 1.6: The SCOP classification, version 1.61 (September,2002). TheCLASSlevel at the top of the

triangle is the most general classification level. The first four classes are most relevant for this work, as they

includeα, β , α/β andα +β folds. Several entries from a level can be summarised by the next higher level

(e.g. aFOLDcontains one ore moreSUPERFAMILIES). The lowest level isPROTEIN DOMAIN. The

numbers of distinct entries at each level are given, making a total of 44327 domains (including the same

domain in different species), extracted from 17406 PDB entries.

et al., 2000) that may partially overlap with Pfam-A.

Sequence databases

In general, the database used in this work for sequence similarity searches wasnr, the

weekly updated non-redundant protein sequence database generated at the U.S. National

Center for Biotechnology Information (NCBI). This database is based on GenBank DNA

coding sequences (Bensonet al., 2002), the PDB, SwissProt (Boeckmannet al., 2003),

PIR (Wu et al., 2003) and the Japanese Protein Research Foundation database.

Whenever human genomic data was used, it was downloaded from Ensembl (Clampet al.,

2003).

1.3.2 Introduction to algorithms

Algorithms are methods for solving problems which are especially suited for computer

implementation (Sedgewick, 1988). Algorithms provide general solutions to general

problems. Often several algorithms can be applied to solve the same problem and this

certainly happens in the field of Structural Biology. In this section I will briefly intro-

duce some algorithms concerning this work, but first it may be necessary to define a few

important terms regarding the description of algorithms.

An algorithm is said to bedeterministicif precisely the same steps are needed to solve

a given initial problem, yielding exactly the same solution. On the contrary,stochastic

algorithms have random components and therefore they will provide different answers,
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though probably similar, to the same problem. Some algorithms have been proven to be

correct by using mathematical induction. For the right sort of problems, these algorithms

always work. However, frequently such algorithms cannot be found or they are too slow to

compute and approximations are preferred. These less rigorous methods generally incor-

porate the current empirical knowledge about the problem of interest and are generically

calledheuristicmethods.

Here a few families of algorithms are listed:

• Exhaustive searches that implement the search space as a tree and explore every

branch, because no deterministic way is known to get quickly to the solution. How-

ever, there are pruning techniques to reduce the space that needs to be explored,

improving the performance of these procedures. The size of the search tree is a

reasonable estimate of the computing time required to find a solution. These ap-

proaches are very expensive in computing terms and are sometimes called brute

force algorithms (Gonzalo-Arroyo & Rodŕıguez-Artacho, 1997).

• Monte Carlo techniques, which randomly sample by use of probability functions to

perform statistical simulations. These are stochastic methods in which the accuracy

of the estimates, by means of the density of sampling, can be controlled, affecting

the required computing time (Presset al., 1992).

• Dynamic programming, a family of algorithms that apply the recursive principle of

divide-and-conquer to the extreme. Basically the problem is split into all the possi-

ble subproblems and all of them are solved and stored to compose global solutions,

making the whole procedure significantly time consuming, but allowing efficient

computation of different solutions (Sedgewick, 1988).

• Genetic algorithms, that imitate the principles of natural evolution to apply selec-

tion, according to some fitness estimate, within populations. They have been ap-

plied to a whole variety of optimisation problems (Michalewicz, 1996).

• Simulated annealing, a Thermodynamics-inspired algorithm to look for a global

extremum in multi-dimension functions. These methods use the Boltzmann prob-

ability distribution during a hypothetical process of cooling down an initially hot

system to select acceptable random jumps in space (Presset al., 1992).

• Steepest descent and conjugate gradient methods, which use local gradients of the

function to be optimised to guide each step in the path to possible global extrema

(Leach, 2001).
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1.3.3 Overview of algorithms in protein structure prediction

The large variety of problems and subproblems in this field has attracted scientists to

consider a broad scope of algorithms to solve them. Three main approaches for protein

structure prediction can be outlined:

• Ab initio, classically defined as the folding of the protein sequence according to

physical principles. In recent years this approach has made use of techniques to

assembly protein conformations from small unrelated peptides (see for instance

(Simonset al., 1997a) and (Jones, 2001)).

• Fold recognition(or threading), recognising that a protein sequence may represent

a protein fold already classified by experimental techniques. Seminal contributions

to this wereSippl (1990),Bowieet al. (1991) andJoneset al. (1992).

• Comparative modelling, in which proteins from the PDB, assumed to be homol-

ogous to the query, are used to guide the building of a three-dimensional atomic

model.Greer(1981), Jones & Thirup(1986) andSutcliffe et al. (1987a) pioneered

this particular methodology.

1.3.4 Overview of protein minimisation and dynamics

Molecular dynamics studies of proteins are based on the molecular mechanics framework,

which uses empirical force fields to calculate intra- and inter-molecular forces within a

system. At this level of detail atoms are the elementary components of the system, allow-

ing these calculations to be much faster than equivalent quantum mechanics calculations

(Leach, 2001). Force fields contain empirically obtained reference values for four types

of parameters: bond stretching, angle bending, torsional terms and non-bonded interac-

tions. Force fields should in principle be transferable sets of parameters, extracted for

example from a few proteins or from a collection of small molecules, to be then be ap-

plied to many different macromolecules. Examples of force fields with parameters for

biological molecules are CHARMM (Brookset al., 1983), AMBER (Cornellet al., 1995)

and OPLS (Dammet al., 1997). Energy estimates of molecular systems can be obtained

with functions that include some of these generic terms:

P(rN) = w1 ·bond(rN)+w2 ·angle(rN)+w3 · torsion(rN)+w4 ·non bonded(rN) (1.1)

wherew1,w2,w3,w4 are weights for each term andP(rN) is the potential energy ofN

atoms in positionsrn.
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By minimising P(rN) functions one can search for the global steric minimum of a

given molecule, and that would be in theory the most likely conformation, the most stable,

for it. Unfortunately, these multidimensional potential functions have many local minima

and, in addition, force fields are not always transferable. As a consequence, minimised

conformations do not always reproduce conformations observed experimentally.

The derivative of the potential of one atom in a molecule with respect to its position

rn is the force that it is receiving from the rest of the molecule. This is the principle for

the simulation of molecules by Molecular Dynamics (MD), in which the behaviour of a

molecular system is monitored along a given period of time through small (fs) time steps

(Leach, 2001).

1.4 Comparative modelling of proteins (CM)

A more detailed introduction to this topic is now given, since it was the inspiration for

most of the work in this thesis. Paul W.Fitzjohn is acknowledged here for his help, par-

ticularly with Section1.4.5.

A generic flowchart for CM methods used by most developers in the field can be seen

in Figure1.7. The steps shown are common to the two main modelling protocols: satis-

faction of spatial restraints (Sali & Blundell, 1993) and building up a protein by inheriting

segments of other proteins (Greer, 1981; Jones & Thirup, 1986; Sutcliffe et al., 1987a).

However, some steps may be executed concurrently or in a different order.

1.4.1 Finding the best templates

Templates can be found by sequence similarity alone, or by using additional sources of

structural information, such as secondary structure. The former approach is used by the

BLAST (Altschul et al., 1997) and FASTA (Pearson & Lipman, 1988) families of pro-

grams, where a query sequence is scanned against a database of template sequences us-

ing broad-spectrum matrices, such as BLOSUM (Henikoff & Henikoff, 1993) or PAM

(Schwartz & Dayhoff, 1978), to score the alignments. Increased sensitivity can be gained

by using the information of protein families (represented as position specific scoring ma-

trices or hidden Markov models) as family-specific matrices, and by using intermediate

sequences searching procedures(Baldi et al., 1994; Krogh et al., 1994; Eddy, 1996; Park

et al., 1998; Schafferet al., 2001). Further sensitivity can sometimes be gained by includ-

ing structural information such as residue solvent accessibility and secondary structure
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Figure 1.7: Generic steps in comparative modelling protocols. Dotted lines indicate optional or parallel

steps. See also Table1.1.

(Rost, 1995; Kelley et al., 2000; Shi et al., 2001), or by combining different alignment

strategies (Elofsson, 2002). However, as low sequence similarity templates generally

yield low accuracy models (Vitkup et al., 2001), some comparative modelling programs,

for example SWISS-MODEL (Guexet al., 1999), use less ambitious and simpler methods

to assure the quality of their results at the risk of missing some modelling targets.

Most of the above methods for identifying suitable templates perform local align-

ments, by finding maximum scoring sequence patches, which do not necessarily cor-

respond to complete protein domains. For this reason databases of protein structural
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domains, such as SCOP or CATH (see also1.3.1), have been used to define templates

(Kelley et al., 2000). For the same reason multi-domain proteins remain a problem for

comparative modelling programs and most modelling programs rely on the user’s knowl-

edge of how to split their query sequence into domains before submission.

1.4.2 Aligning the templates to the query

Once the complete set of possible template(s) have been found, it is necessary to select

a subset from which to build the actual model. Modellers have long preferred to use

several templates where available (Sali & Blundell, 1993; Guexet al., 1999; Bateset al.,

2001; Venclovas, 2001), but the practical advantage of this approach has not yet been

proven (Tramontanoet al., 2001). Indeed, most methods would perform better if the

single ideal template could be recognised, but unfortunately pairwise sequence identity

is not a consistent criterion by which to address this question (Wood & Pearson, 1999;

Koehl & Levitt, 2002). If several templates are to be used they have to be optimally

aligned to drive the process of model building. ClustalX (Thompsonet al., 1994), T-

Coffee (Notredameet al., 2000) and similar programs can be used for this, despite the

fact that they can only produce approximations to optimal solutions for more than two

sequences. But because sequence similarity between templates can be very low it may be

necessary to use their structural similarity to align them. In this case programs such as

SSAP (Taylor & Orengo, 1989), STAMP (Russell & Barton, 1992) or CE (Shindyalov &

Bourne, 1998) may be used.

Finally, the query sequence needs to be accurately aligned to the template(s); again

sequence and structural information is often used. Typically the alignment procedure

must exclude gaps in secondary structure elements and anchor the alignment in non-loop

regions. In addition, key functional motifs should also be correctly aligned, for example P-

loops (Walkeret al., 1982), EF-calcium-binding loops (Kawasaki & Kretsinger, 1995) and

catalytic triads(Branden & Tooze, 1999). Databases of such motifs have been constructed,

including PRINTS (Attwoodet al., 1998) and BLOCKS (Henikoff et al., 1999); however,

I am unaware of any automatic modelling procedure that takes advantage of these useful

sources of information.

1.4.3 Modelling by satisfaction of spatial restraints

This family of approaches was first proposed in the mid-eighties (Braun & Go, 1985;

Havel & Snow, 1991; Sali & Blundell, 1993) and consists of computing geometrical and
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biochemical restraints from the set of superimposed templates that the aligned query se-

quence will have to optimally satisfy. This method considers the possible templates as a

sample of the folding space for a group of homologous proteins. Since the query sequence

is believed to be another homologous member of the group, it will have to fulfill the re-

straints dictated by its relatives. As a consequence, models built using this method are

derived from every template used and do not directly inherit backbone segments from any

one template. Optimisation of possible conformations according to the restraints can be

done in a variety of ways ranging from conjugate gradient minimisation (Sali & Blundell,

1993), simulated annealing (Ogata & Umeyama, 2000) and graph theory (Samudrala &

Moult, 1998). The weakness of the method is that templates need to be reasonably super-

imposable to define the restraints and that some regions are poorly restrained. Its strength

however, is that it can directly model an entire protein structure as a continuous chain.

Methods which essentially apply distance constraints to reconstruct the protein backbone,

such as neural networks (Lund et al 1997), also fall into this category.

1.4.4 Modelling by fragment building approaches

This has historically been the most popular approach for comparative modelling, which

grafts protein fragments from the template(s) to build up the query structure (Greer, 1981;

Jones & Thirup, 1986; Blundell et al., 1987; Sutcliffe et al., 1987a; Guexet al., 1999;

Bateset al., 2001). This method has clear limitations in modelling sections which differ

widely between templates, such as loops, because the matching of the selected fragments

is non-trivial and often requires additional modelling steps (see below). However, the

benefit of the approach is that sections confidently inherited from the templates have in-

trinsically good geometry and require minimum subsequent optimisation. A related but

novel methodology has recently been applied toab initio protein structure prediction.

This uses small protein fragments extracted from templates which are not necessarily ho-

mologous (Ungeret al., 1989; Simonset al., 1997a), allowing models to be built where

no significant sequence similarity is found to any template. The accuracy limits for these

methods has been recently benchmarked byKolodnyet al.(2002), with average backbone

RMSDs ranging from 0.8̊A to 2.9Å , depending on the fragment library used.

1.4.5 Optimisation: selection of side-chains and loops

Once the conserved core of the model has been constructed, most protocols then investi-

gate loop and side-chain optimisation. In the context of a protein, a loop can be defined as

a region of variable length and irregular shape connecting secondary structure elements
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(Branden & Tooze, 1999) (see also Section1.1.2). If there is a high sequence similarity

with the template, then these homologous loops may be modelled in a similar way to the

rest of the protein (Greer, 1981). The methods for constructing loops for less conserved

regions fall into two main categories, database searches andab initio methods.

Database searches are based on grouping observed loops in the PDB and building

a library. The method relies on the assumption that the set of structures used is large

enough to produce a database which cover all possible geometrical configurations that

protein loops can adopt. However, as segments of up to nine residues with the same

sequence can have completely unrelated conformations in different proteins (Sander &

Schneider, 1991; Mezei, 1998), sequence alone can not be used as a method of defining

useful groups. Early classification systems relied on manual investigation of loops within

specific environments, such asβ -turns (Ventkatachalam, 1968), γ-turns (Roseet al., 1985;

Milner-White & Poet, 1986) andα-α,α-β , β -α andβ -β arches (Edwardset al., 1987;

Rice et al., 1990; Colloc’h & Cohen, 1991; Efimov, 1991). More recently, automatic

classification systems have been used, which include information about the structures

flanking the loop and clustered based on RMSD (Kwasigrochet al., 1996; Wintjenset al.,

1996). More specific and tighter clusters have also been generated by specifically taking

into account bracing geometry, Ramachandran patterns and sequence (Oliva et al., 1997).

Ab initio loop prediction methods are based on a conformational search of the space to

be filled. There are many methods and different potential energy functions to discriminate

between possible conformations, including systematic conformational searches, molec-

ular dynamics simulations, Monte Carlo techniques, genetic algorithms and dynamic

programming (see for example (Contreras-Moreiraet al., 2002) and articles referenced

therein). It is not clear yet whether database orab initio methods are the more accurate

for small to medium size loop construction. For example, in 1994 a study looking at the

effectiveness of database methods concluded that they were only sufficient for loops of

up to 4 residues (Fideliset al., 1994). However, later work showed that with some opti-

misation of the loops the limit for databases searches could be raised to 9 residues (van

Vlijmen & Karplus, 1997) - for a loop of this sizeab initio methods need to generate

substantial numbers of loop configurations to fully sample conformational space. What

is clear is that in both database andab initio methods, a scoring function is required to

select the correct loop from the ensemble searched. Many scoring functions have been

tried and the effectiveness of these dictates the final accuracy that can be attained. Scoring

functions remain a problem and may require a deeper consideration of complete free en-

ergy summations that include appropriately weighted terms for example of loop entropy

(Xianget al., 2002) and desolvation (Janardhan & Vajda, 1998).
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Usually, the second phase in optimising a model is the addition and refinement of

the side chains. Side-chain prediction algorithms almost exclusively use a database of

rotamers, as this significantly reduces the complexity of refining all the side chains in a

protein at the same time. Early work had noticed that there was a significant tendency for

side chains to prefer certain rotameric states depending on secondary structure (McGre-

gor et al., 1987; Sutcliffe et al., 1987b). Similar investigations led to the production of

backbone dependent rotamer libraries (Dunbrack & Karplus, 1993; Boweret al., 1997).

Using these libraries, the simulated annealing method used byLee & Subbiah(1991) was

reasonably successful at predicting side-chains of the hydrophobic core of proteins. A

significant reduction in the number of combinations of rotamers to search was made pos-

sible by the dead-end elimination method (Desmetet al., 1992; Lasters & Desmet, 1993;

De Maeyeret al., 2000), which allows the early elimination of impossible rotameric com-

binations. Other methods for searching side-chain combinations were also developed, one

of the most widely used being the self-consistent mean-field approach (Koehl & Delarue,

1994).

Many of these approaches are often tested on known crystal structures with the side

chains removed. Whilst this is fine for checking the accuracy of the methods, it does not

check the accuracy when used for predicting side-chain conformations for a comparative

model which has backbone errors inherited from the modelling process.Desjarlais &

Handel(1999) developed a method that allowed flexibility in the backbone at the same

time as the selection of the side chains. This showed that even in core regions, significant

changes to the backbone inherited from homologous proteins can occur to accommodate

the new side chains, and current methods that do not include backbone flexibility would

be severely impeded in choosing the correct rotamers. It was also assumed that core re-

gions were exclusively dictated by van der Waals packing. However, this has been shown

to be insufficient on its own to define these regions (Kussellet al., 2001). Recent work

(Xiang & Honig, 2001) has concluded that there is no combinatorial problem in the choice

of the correct side chain on a correct backbone, but that as long as a highly detailed ro-

tamer library is used the limiting factor becomes the scoring function. A detailed study

(Jacobsonet al., 2002) into surface side chains has shown that the crystal environment has

significant effect on the final conformation adopted. In addition, limits for the maximum

accuracy were also calculated which showed that, whilst it should be possible to pre-

dict core regions to 90% accuracy compared with the X-ray structure, many surface side

chains adopted many different conformations dependent on their environment. Therefore,
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predicting single rotamer states for exposed side chains is not justified. Given these con-

straints, many modern methods do manage to achieve a reasonable level of accuracy and

even reach the limit in the core regions (Mendeset al., 1999; Petrella & Karplus, 2001;

Liang & Grishin, 2002).

1.4.6 Energy refinement and molecular dynamics

As a final step some form of energy refinement is usually performed on the models.

This can be achieved by using one of the energy minimisation software packages such

as CHARMM (Brookset al., 1983) (see1.3.4). This step requires adding covalent hydro-

gen atoms, generally ignored during the construction of the model. In addition, depending

on the pH and the local environment, the protonation state of basic and acid groups may

change. Unless specific environments are to be studied, generally a neutral pH is assumed.

If cofactors and their positions are known, they should be added, although only the most

common ones are currently included in force-fields.

Refinements obtained with these approaches usually have a small radius of conver-

gence and are used simply to remove steric clashes, particularly between side chains, and

ensure sensible covalent geometry is maintained around each atom. Often this achieves

little more than improving the appearance of the model (Schonbrunet al., 2002). Indeed,

there has been little work done to show if energy refinement does in general slightly refine

models in the correct direction. A technique that enables a larger radius of convergence,

compared to standard energy minimisation, is molecular dynamics. However, in a recent

study on a small number of protein models using state-of-the-art explicit solvent molecu-

lar dynamics, only limited success was achieved in refining some of the models closer to

the native state (Leeet al., 2001).

1.4.7 Error analysis

What are the most common errors in comparative models? Previous work (Marti-Renom

et al., 2000; Bateset al., 2001; Tramontanoet al., 2001) identifies three major sources of

errors in comparative models: template selection, sequence alignment and loop/side-chain

building. Selecting templates becomes especially difficult when their sequence similar-

ity to the query is low (less than 25-30% of sequence identity). In these circumstances

even statistically significant sequence matches, for example found by BLAST, can iden-

tify totally different folds. As explained in detail above, there are many different sequence

alignment methods but so far none can be considered optimal. However, whilst sequence

identity is not a consistent measure of expected alignment accuracy (Tramontanoet al.,
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2001), alignments over 40% of sequence identity between query and template can be con-

sidered confident (Marti-Renomet al., 2000). Below this threshold, alignments tend to

accumulate errors. Unfortunately, these errors are inherited by the rest of the modelling

process and current protocols are not able to detect them. A possible solution to this has

been investigated by building models from several alternative alignments and then choos-

ing the best based upon energetic or statistical potentials (Melo et al., 2002). Finally,

whilst no method is perfect, it has been shown that by using several protocols the opti-

mal alignment may be obtained - the problem is then reduced to being able to routinely

identify this alignment (Elofsson, 2002).

Even in confident regions of sequence similarity quite different backbone conforma-

tions can be present in a comparative model compared to the native or target structure.

These can confuse rational experimental design and occur essentially because proteins

are flexible (see Figure1.8 A) - proteins can exhibit different conformations depending

on their environment (Branden & Tooze, 1999; Liu et al., 2002). A clear example of this

problem is seen in globular proteins that build the 30S ribosome. Many of them have been

solved independently and as part of the ribosome and they show important differences in

exposed loops and N- and C-termini that seem to be important for function (Brodersen

et al., 2002). If these structures are used as templates they will yield different models for

the same protein.

If we are sure that the above alignment problems do not affect the model under con-

struction we can then consider loop building errors as the next major problem. Loops can

be confidently modelled if they are only up to 5-6 residues long (Martin et al., 1997). In

fact, as described above, loops of this size tend to form conformational clusters (Oliva

et al., 1997; Branden & Tooze, 1999). Longer flexible fragments are usually not accu-

rately modelled and indeed some modelling protocols simply do not attempt to model

these regions (Venclovas, 2001). However, since loops are frequently important for pro-

tein function (Oliva et al., 1997) and are sometimes difficult to detect even for X-ray

or NMR structure determination experiments, we must look further for solutions to this

essentially mini protein folding problem. One possible solution to this could be to con-

sider an ensemble of low energy loop conformations within a broad free energy minimum

(Xianget al., 2002).

The next level of uncertainty in models is at the side-chain level. As discussed above,

provided the modelled backbone quality is high, side-chain are usually well placed in the

protein core but are subject to variations at the surface, as shown in Figure1.8B. The

uncertainty in surface side-chain rotamers can sometimes be resolved when considering

protein-protein interactions as these reduce their degree of flexibility.
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(a)

(b)

Figure 1.8: (a) An example from the automatic server 3D-JIGSAW, showing a backbone model (blue),

based upon an NMR template, superimposed on the high resolution structure of the same protein eventu-

ally solved by X-ray crystallography (red). NMR (template) and X-ray structures have identical sequences.

Interestingly, there are many conformational differences throughout the fold (not just loop regions) giving

a final backbone RMSD of 2.5̊A. (b) Cartoon of a model (red) showing minor deviations from the exper-

imental X-ray structure (blue) modelled with 3D-JIGSAW from a 95% identical template. Hydrophobic

core side chains (marked withH) agree well with the observed; however, exposed side chains (C) can show

significant differences in their rotameric states due to crystal contacts (indicated here by the green chain),

or simply because they are exposed to solvent (E), suggesting they may have multiple rotameric states.

Finally, a common problem in comparative modelling is to calculate exact relative
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domain orientations in multi-domain proteins. Surprisingly, given the large RMSD errors

involved, this appears to be a subject for which a comprehensive study has not as yet been

performed. Molecular dynamics and protein docking techniques may aid the solution to

this domain-packing problem (see for example (Janinet al., 2003)).

1.4.8 Quality control

What kind of RMSDs are we likely to expect between model and the experimentally de-

termined structure?Chothia & Lesk(1986) studied the sequence and structural variabil-

ity within protein families and observed that as the sequence similarity between proteins

decreased, the RMSDs between their superimposed structures increased exponentially.

Based on the results from CASP experiments (see Section1.5), similar studies have been

conducted on protein model quality relative to closest template (Vitkup et al., 2001). Fig-

ure1.9shows the latest results from the EVA experiment (Eyrichet al., 2001) (see Section

1.5) plus our own in-house benchmark of model accuracy. In general, regardless of the

servers used, for proteins sequences around 95% identical the backbone RMSD is ex-

pected to be under 1̊A; when the sequence identity drops to 30%, the expected RMSD is

around 4̊A. As can be seen in the figure, there is an increasing range of variability around

these error estimates towards lower sequence identities.

Apart from the grosser limitations to the use of protein models dictated by sequence

similarity to the templates, the user can check the stereochemical and thermodynami-

cal quality of models by using programs such as PROCHECK (Laskowskiet al., 1993)

and WHATCHECK (Hooft et al., 1996). Another way to validate comparative models

is to check whether the implications of the modelled structure agree with experimental

observations, such as mutations or biochemical measures, or observations found in the

literature.

However, until a rigorous ranking scheme for model accuracy can be found, the fi-

nal indication of the correctness of a model protein will always lie in the hands of the

experimentalist.

1.4.9 Applications of CM

As a consequence of the above quality controls it is possible to enumerate the applications

for which protein models are likely to be useful according to the sequence identity be-

tween query and template (Marti-Renomet al., 2000; Baker & Sali, 2001). Traditionally,

molecular biologists have used protein models to design site-directed mutagenesis, engi-

neering experiments or to understand mutant phenotypes in the light of protein structure.
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Figure 1.9: A, comparison of observed accuracy for models returned to the assessors for the EVA exper-

iment. Cα RMSDs are reported versus % sequence identity to the closest template. There are five server

results plotted, indicated by the first five labels in the figure key (see Table1.1 for more details), plus a

benchmark plot from pairs of SCOP family members (SCOPobs). The error bars show the extent of varia-

tion expected for each sequence identity sub-group (binned every 10%).B, (axis titles as inA), individual

observations in the plot of pairwise SCOP families used in the calculation of error bars forA.

This Figure was prepared with help from Paul W.Fitzjohn.
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Even very low sequence identity templates yield useful models some of which have given

insights into potential protein functions, see for example (Garmendiaet al., 2001; Devos

et al., 2002). Apart from functional study applications, low-resolution models are also

being used to build supra-molecular structures (Zhanget al., 2000; Wriggers & Chacon,

2001; Aloy et al., 2002; Elcock, 2002). Mid-resolution models, derived from templates

around 50-60% identity level, could be valuable as models for use in molecular replace-

ment (X-ray crystallography) and the rational design of more stable proteins, for example

the addition of a disulphide bond (Mansfeldet al., 1997). Finally, high resolution models,

those obtained typically from templates over 90% identical in sequence, are being used

routinely as receptors to dock and rank small molecules for potential pharmaceutical use

(Mangoniet al., 1999; Schafferhans & Klebe, 2001; Peitsch, 2002). In addition, it is ac-

cepted that the growing interest in unveiling protein-protein interactions can benefit from

the contributions of comparative modelling and docking programs (Tovchigrechkoet al.,

2002).

In terms of finding disease-related proteins and for preliminary investigations of po-

tential drugs to modulate the functions of these proteins, the most important genome to

generate complete three-dimensional models for is obviously our own - the human ge-

nome. Figure1.10shows the number of human proteins with at least one domain that can

be modelled using comparative modelling techniques. We estimate that up to 38% of the

translated genome contains domains which can be modelled using templates of at least

20% sequence identity. This would mean an expected accuracy for the conserved core

of each model between 0.9 and 4.0Å Cα RMSD. These models could be used for any of

the tasks mentioned above or to understand the structural effects on proteins due to single

nucleotide polymorphisms (Wang & Moult, 2001) or genetically characterised diseases at

the molecular level (Hogg & Bates, 2000; Huytonet al., 2000; Sellaret al., 2003).

1.4.10 Problems and potential solutions

As experiments like CASP have shown, comparative modelling involving some form of

human intervention still produces models of higher quality than models produced from

completely automatic procedures. Intervention seems to be particularly critical in select-

ing adequate templates and tweaking the alignments (Bateset al., 2001; Venclovas, 2001).

Therefore, more algorithmic development is required if we are to automatically select op-

timal templates and alignments. Some progress has recently been made with the former

problem by selecting templates from large ensembles of sequences, theoretically gener-

ated according to their structural compatibility with a template (Koehl & Levitt, 2002).
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Figure 1.10: Distribution of human proteins containing at least one domain with significant sequence

similarity to SCOP domains. The vertical bar separates the fraction that can be modelled to at least a level

of resolution that may be useful for experimental design such as site-directed mutagenesis. Over half of the

human genome (proteins not represented in the plot) cannot confidently be assigned to known protein folds.

These assignments were made using 3D-GENOMICS (Muller et al., 2002).

Recently the latter problem has also been addressed by a consideration of a weighted con-

tribution of a number of current sequence alignment protocols (Elofsson, 2002) (see also

3.7).

Irrespective of the above problems, increasingly more is being asked of comparative

modellers. For example at CASP4 they were expected to model as low as 13% sequence

identity with the closest template, and for CASP5 (held during the summer of 2002), of

the 38 targets considered to be within reach of comparative modelling, 10 have only be-

tween 10 and 20% similarity to the closest template. Many of the algorithms designed

for comparative modelling were not specifically designed to model at these very remote

levels, as this was then considered more the domain of fold recognition experts. Inter-

estingly, this is leading to a progressive merging of the fold recognition and comparative

modelling fields. Comparative modellers are learning from the fold recognition com-

munity how best to detect very remote sequence relationships and how best to align the

query structure to those templates once identified. Equally, those in the fold recognition

community are learning how to generate full three-dimensional models from their fold

recognition and alignment algorithms. Hopefully this will create a second generation of

algorithms, or a blend of algorithms, that are much more likely to be successful across
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a wide range of sequence similarity between query and template sequences. Together

with this convergence of algorithms, and on the assumption that only a limited number

of protein folds exist, rational structural genomics efforts may be the key to allow three-

dimensional modelling of any sequence in a matter of years (Baker & Sali, 2001; Vitkup

et al., 2001). However, the end-game of protein modelling, refining medium resolution

models to high levels of atomic accuracy, levels of accuracy routinely obtained in X-ray

structures, may take considerably longer as more sophisticated force fields (Halgren &

Damm, 2001) (see also1.3.4) and substantially more computer power at the fingertips of

developers may be required.

1.4.11 Web-based modelling

Although there are a number of well maintained downloadable comparative modelling

software packages available, the future of comparative modelling as an essential tool for

biologists may be the growing number of web-based servers. Table1.1 summarises the

tools that are currently freely available for academic use. The advantage of web tools is

that they are easy to run, even across different computer platforms, often only requiring

the query sequence and user’s e-mail address. In addition the sequence and structural

databases that the algorithms require are usually maintained by the developer; thus link-

ing software to the appropriate up to date databases is not a problem. Some of these

servers are now allowing some user intervention in the model building process, for exam-

ple SWISS-MODEL allows choice of templates and our own server, 3D-JIGSAW, allows

both template selection and manual adjustments of the query to template alignments.

Server/program nameURL/Modelling method

3D-JIGSAW http://www.bmm.icnet.uk/servers/3djigsaw

Looks for homologous templates and splits the query sequence

into domains. If good templates are found the best covered do-

mains are modelled, currently using a maximum of two tem-

plates. Different loops are tried to connect secondary structure

elements taken from the templates. The best ensemble is then

refined (Bateset al., 2001; Contreras-Moreira & Bates, 2002).

CPHmodels http://www.cbs.dtu.dk/services/CPHmodels

A neural network based method to predict C-α contacts to drive

the sequence alignment. No side-chains are constructed (Lund

et al., 1997).

continued on next page

http://www.bmm.icnet.uk/servers/3djigsaw
http://www.cbs.dtu.dk/services/CPHmodels
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continued from previous page

Server/program nameURL/Modelling method

EsyPred3D http://www.fundp.ac.be/urbm/bioinfo/esypred

Exploits a new alignment strategy using neural networks. Com-

plete models built with MODELLER (Lambertet al., 2002).

FAMS http://physchem.pharm.kitasato-u.ac.jp/FAMS

Templates found by sequence similarity are superimposed to de-

fine the structural landscape of each residue in the query sequence

(similar ideas to MODELLER). Protein fragments with their side-

chains are then sampled to fit the observed landscape using a sim-

ulated annealing algorithm (Ogata & Umeyama, 2000).

Nest∗ http://trantor.bioc.columbia.edu/̃ xiang/jackal

Allows building models with one or several templates tuning their

alignments and permitting artificial evolution.

MODELLER∗ http://salilab.org/modeller/modeller.html

Builds a complete model based on alignments prepared by the

user. The procedure is based on satisfying spatial restraints (auto-

matically computed from the templates used ). Models are refined

using a variety of algorithms (Sali & Blundell, 1993; Fiseret al.,

2000).

ModzingerZ http://peyo.ulb.ac.be/mz

Templates are aligned to the query sequence to build a library

of backbone fragments. Fragments are then combined to build

alternate models and scored. Finally side-chains are added.

PCOMB http://www.sbc.su.se/̃ arne/pcomb

Pcomb uses a combination of several sequence-profile and

profile-sequence searches. Final models are produced using

MODELLER.

PROTINFO http://protinfo.compbio.washington.edu

A core model is built for each template found by sequence sim-

ilarity to the query. Loops and side-chains are then added to the

best scoring models.

SWISS-MODEL http://www.expasy.ch/swissmod

BLAST found templates are multiply superimposed and then

aligned to the query sequence excluding loop regions. The core

is then calculated as a weighted average of the templates. Loops

are then added and the final model is refined (Guexet al., 1999).

continued on next page

http://www.fundp.ac.be/urbm/bioinfo/esypred
http://physchem.pharm.kitasato-u.ac.jp/FAMS
http://trantor.bioc.columbia.edu/~xiang/jackal
http://salilab.org/modeller/modeller.html
http://peyo.ulb.ac.be/mz
http://www.sbc.su.se/~arne/pcomb
http://protinfo.compbio.washington.edu
http://www.expasy.ch/swissmod
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continued from previous page

Server/program nameURL/Modelling method

TSUNAMI http://www.pirx.com/tsunami

Fragments of templates found by a BLAST-like algorithm are as-

sembled and the final model is evaluated using statistical poten-

tials.

Table 1.1: Freely available CM web-servers and programs. These programs return atomic coordinates to

the user. Most fold-recognition servers return only alignments and therefore are not listed here. (∗ indicates

downloadable software)

1.5 CASP blind trials, EVA and LiveBench

There is a formal quality control procedure to test and evaluate new prediction techniques

every two years, the Critical Assessment of techniques for protein Structure Prediction

(CASP) experiments. As the number of protein structures predicted in each CASP ex-

periment has been small the statistical significance of ranking the prediction methods has

been brought into question (Marti-Renomet al., 2002). However, the value of human

expert analysis should not be underestimated as developers gain additional insights into

further developing their algorithms beyond that given by pure numerical analysis. For

example, advantageous ways to mix current algorithms may be suggested.

To address the statistical weakness of CASP and to help modellers test their algo-

rithms on a more frequent basis, two continuous assessment projects have recently started:

EVA (Eyrich et al., 2001) and LiveBench (Bujnicki et al., 2001), more focused on fold

recognition programs. In these experiments, sequences of proteins about to be released

in the PDB database (determined experimentally) are automatically sent to participant

servers around the world, which in turn send back automatically built protein models.

The benefit of such on-line experiments is that the evaluation of model quality is also

fully automatic and so the results for each server in the experiment can be posted on the

web very quickly and at regular intervals; EVA results for example are tabulated weekly.

This enables molecular biologists to determine which server(s) are currently likely to give

them the more accurate models and helps developers rapidly benchmark and rank their

new modelling algorithms against others in the field. The handicap of these methods is

that although an extensive numerical analysis is performed there is no human overview

of the interplay between these results and the variety of complex methods used to obtain

them.

http://www.pirx.com/tsunami
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1.6 Structural Genomics

As a complement to genome sequencing projects, the Structural Genomic initiative (and

participating projects around the world (seehttp://www.structuralgenomics.org/)) have

the goal of obtaining useful three-dimensional models of all known proteins by a com-

bination of experimental structure determination and CM (Vitkup et al., 2001), or more

generally, by combining different and complementary experimental and theoretical tech-

niques (Saliet al., 2003). The idea is to optimize the efforts in such a way that a minimum

number of experimental structures can be used to maximize the application of CM (and

other techniques) to the remaining proteins. For this to be achieved, experimental targets

must be selected according to the distribution of their homologous sequences. Estimates

by Vitkup et al. (2001) suggest up to 16,000 structures may be needed. This calcula-

tion does not account for membrane proteins, usually excluded from these initiatives, or

proteins technically difficult to study with current experimental procedures, for example

proteins containing highly flexible or low complexity regions (Liu et al., 2002), and as-

sumes that CM is reliable provided that the sequence identity between solved structures

and the remaining is of at least 30%. To coordinate efforts, list of targets waiting to be

solved are regularly updated, as well as proteins currently under experimental study (see

for instancehttp://www.jcsg.org).

Building this comprehensive set of protein structures (known and predicted) is ex-

pected to be beneficial in a number of ways (Burley, 2000):

• Each one of these structures can serve as a starting point for a rational program of

experimentation, such as site-directed mutagenesis, ligand binding studies, enzyme

assays or protein-protein interaction studies.

• Should the structure represent a new fold with a known function, it may well be

possible to identify regions of the protein responsible for functionin silico by com-

paring the newly determined structure with those of structurally distinct yet func-

tionally similar proteins.

• When the structure proves to be a known fold with a known function, we can expect

to learn more about divergent/convergent evolution. This has been the case for many

TIM barrel enzymes, which catalyze a wide variety of chemical reactions using the

same protein fold decorated with different patterns of surface-accessible residues

creating functionally distinct active sites.

http://www.jcsg.org
http://www.jcsg.org
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• Where we do not know anything about biochemical function, both new and previ-

ously known structures should still prove useful. The newly determined structures

that are not in fact novel can be compared with their structural homologs, and it

may be possible to infer function.

• If a new fold is found with no functional information available at all, it may be

characterized by scanning it against a library of all known binding sites and enzyme

active sites.

There are however some limitations for these Structural Genomics projects. The main

problem is the fact that the structure of an isolated protein may not indicate its biological

function(s) if it normally resides in a macromolecular complex. In addition, the so-called

low complexity regions, which may never adopt stable conformations or remain unstruc-

tured until they interact with their respective targets (Liu et al., 2002), are clearly beyond

the initial scope of structural genomics projects(Burley, 2000).

1.7 Outline of thesis

Comparative modelling is a widely used methodology in Structural Biology. Several

problems affect the performance of CM and therefore solutions for them are needed to

increase its applicability. Here, different algorithms and approaches were tested with

this aim and some useful insights were obtained. Interestingly, a biologically inspired

algorithm described in Chapter3 guided us to find some evolutionary features of protein

families which may have implications for protein design.

The main aspects of this work are now introduced.

• Chapter2 describes the development of a tool to split protein sequences according

to structural domains and to align available templates to each sequence segment.

The web server DomainFishing was later created to implement these ideas. The

performance is benchmarked and some problems are identified.

• Chapter3 describes a theoretical approach to recombine protein structuresin silico

as a different way to build comparative models. The method is extensively bench-

marked both in the laboratory and also during CASP5 blind tests. Interestingly, the

method is also useful for Fold Recognition.

• In Chapter4 we explore the possible connections between gene structure and its

corresponding protein fold by doing statistical analysis and some artificial recom-

bination experiments. The data obtained suggests that the distribution of introns in
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genes is sensitive to protein structure and that protein recombination experiments

may reveal evolutionary features of protein families. In particular, a weak spatial

correlation is found to those places in primary sequence where introns are less likely

to occur. Some implications for protein design and related work are discussed.

• This thesis closes with a summary of the results and some concluding remarks, in

Chapter5. Possible improvements and suggestions for future work are included in

every chapter.
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Chapter 2

Alignments and templates in

Comparative Modelling

2.1 The alignment problem

As soon as protein sequencing techniques, pioneered bySanger(1952), were developed

and sequences started to become available, the need for tools to compare them became

obvious. The adopted way to compare protein sequences was to align them, as shown in

Figure2.1. Aligning proteins has many possible applications; three related to this work

are highlighted here:

• Finding evidence for homology, the existence of a possible common ancestor relat-

ing the compared proteins and their genes.

• Inferring evolutionary constraints that may indicate the biochemical function, such

as conserved binding sites or residues composing the hydrophobic core of proteins.

• Predicting secondary structure, useful for example in improving difficult sequence

alignments or to select possible epitopes in proteins susceptible to be recognised by

antibodies.

The elementary sequence alignment involves a pair of proteins. As suggested by Fig-

ure2.1, alignment methods should have well defined metrics to score matching residues

and should also be able to manage insertions and deletions in the primary structure. The

most important algorithm developed for this purpose is that byNeedleman & Wunsch

(1970) to globally align two proteinsa andb(or DNA sequences) of lengthn andm. This

dynamic programming method alignsn andm from the first to the last residue maximising
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Figure 2.1: Sequence alignment of three example proteins as depicted by the program ClustalX (Thomp-

sonet al., 1994). Conserved columns are marked with?. Note that in protein 3 an otherwise conserved

Threonine residue (T) is substituted by Serine (S). A deletion (.) is shown in protein 2. The colour of

each column usually describes biochemical properties of the residues highlighted.Note that O does not

correspond to any biological amino acid.

the alignment score while allowing deletions in either sequence to occur. This method, as

modified bySellers(1974), uses two cost parameters for opening and extending a deletion

(or gap) and also a precomputed 20×20 matrix containing the observed natural amino

acid substitution frequencies (see Section2.1.1). With this data, the procedure calcu-

latesn×m Di, j cumulative partial scores usually starting from the top left corner of the

dynamic programmingn×m matrix D towards the bottom right corner, following these

simple rules (ck is the penalty for introducing a gap of lengthk):

D(i, j) = max



D(i−1, j)−ck deletion at position j (cell above)

D(i−1, j−1)+score(ai ,b j) substitutionai ,b j

D(i, j−1)−ck insertion at position j (cell to the left)

0 (local alignments, if D(i,j)< 0)
(2.1)

These rules imply that an extra column and and extra row are needed to start the

calculations, as frames. In the original global alignment algorithm, these extra elements

in the matrix are filled using a linear function of the gap cost, starting on the top left

corner. When the matrix has been filled, the cell containing the maximum value along the

bottom and right borders is chosen as the alignment start and a trace back route is found

until the left or top borders are met, maximising the overall score.Smith & Waterman

(1981) modified this approach to make local alignments. Here the starting cell for the

alignment, the maximum, is searched in the whole dynamic programming matrix and the

trace back is stopped as soon as a cell containing a 0 score is found.

These alignment algorithms are relatively expensive as they requiren×mcalculations

and so their time complexity is the product of the length of the sequences involved. Due
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to the large size of current sequence databases, these algorithms are usually not used to

search them. Instead, faster algorithms that explore only relatively minor fractions of the

alignment space encompassed by a pair of proteins are preferred. In Section2.1.2one of

the most successful methods of this type, BLAST, is described.

2.1.1 Scoring matrices

A substitution scoring matrix is a 20×20 matrixSin which each cell contains an empirical

value to score the substitution of one natural amino acid by another one. These matrices

are tailored so that they reproduce a desired behaviour, such as producing alignments

similar to those that an expert would do, or aligning residues in a way that agrees with

observations in nature. A general equation for substitution scoresSi j would be:

Si j =
log

qi j
pi p j

λ
(2.2)

whereqi j is the observed exchange frequency with which amino acidi is replaced by

amino acidj, as observed when analysing natural mutations in groups of clearly homol-

ogous proteins.pi and p j are background frequencies of residuesi and j in all known

protein sequences.Si j is then multiplied by a factor and rounded to the nearest integer

for simplicity. These scores are denominated log-odds and may be divided by a scaling

factorλ , specific for each scoring system (for BLAST using a BLOSUM62 matrix, takes

the value 0.267). Most scoring matrices assume that the expected scoreSi j for a chance

amino acid substitution in a comparison of two random sequences would be negative. The

explanation for this is that, otherwise, random alignments would have positive scores if

long enough.

The most common generic scoring matrices are PAM and BLOSUM. The choice of

the substitution matrix, and in general the scoring scheme used, is crucial for the quality

of the alignments obtained, but no single scoring system appears to be the best for all pur-

poses (Elofsson, 2002). These matrices are of general use and therefore can, in principle,

be applied to many different proteins. However, more specific matrices would perhaps

allow better alignments for specific problems.

PAM matrices

The Point Accepted Mutation (PAM) matrix models the evolutionary distance between

sequences of closely related proteins (Schwartz & Dayhoff, 1978). Cells in the matrix

contain the estimated probability of exchanging amino acidi with residuej after a given
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evolutionary interval measured in PAM units. One PAM is the probability of a residue

to be mutated during an evolutionary distance in which 1 in 100 point mutations was

accepted. The original PAM250 matrix was based on a database of 1572 changes in 71

groups of closely related proteins. PAM matrices for longer evolutionary distances can be

obtained by multiplying each target exchange frequency of the PAM1 matrixn times with

itself to generate a PAMn matrix. By trial and errorSchwartz & Dayhoff(1978) found

that a PAM 250 matrix works well for distant relationships. The main problem with this

PAM measure of distance is that it assumes that all positions along a protein sequence are

equally mutable, and that is clearly not the case.

BLOSUM matrices

BLOSUM matrices were derived from conserved sequence blocks obtained from the

BLOCKS database (Henikoff & Henikoff, 1992; Henikoff et al., 1999). Frequencies

of amino acids in these blocks of homologous sequences were tabulated and exchange

and background probabilities calculated. Each block is a cluster of proteins built using

a minimum % of sequence identity,n. The most common matrices are BLOSUM50,

BLOSUM62 and BLOSUM80, where the number indicates then% cut-off. BLOSUM

matrices are constructed from sequences of any evolutionary distance without theoretical

extrapolation, in contrast to PAM matrices. BLOSUM62 is shown in Table2.1.

Gonnet matrices

A different method to measure differences among amino acids was developed byGonnet

et al. (1992) using exhaustive pairwise alignments of proteins from the MIPS protein

sequence database (Mewes, 1991). They used PAM distance matrices to calculate initial

alignments. These alignments are subsequently used to recalculate new scoring matrices.

This process is iterated until convergence. The obtained scoring matrix is the Gonnet250

matrix and according to their results it should be used in preference to a PAM250 matrix.

2.1.2 BLAST, PSI-BLAST and IMPALA

As protein databases grew, several heuristic methods to speed up sequence searches were

developed. Here the BLAST(Basic Local Alignment Search Tool) (Altschul et al., 1990)

method and its derivatives PSI-BLAST(Altschulet al., 1997) and IMPALA(Schafferet al.,

1999) are described since they have been applied extensively in this work. The basic prin-

ciple is that significant sequence similarity may be found by comparing short protein
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A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4

R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1 -4

N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4

D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4

C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4

Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4

E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4

H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1 -4

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1 -4

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0 -4

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2 -4

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4

B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4

Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4

X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1 -4

* -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 1

Table 2.1: The BLOSUM62 scoring matrix
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fragments without dynamic programming. If short fragments from two proteins match,

more sensitive and time consuming refinement steps can then be applied (including dy-

namic programming). These methods do not guarantee optimal alignments between two

sequences but allow large databases to be scanned in a practical period of time. The

BLAST algorithm to align two sequences includes five steps:

1. Find pairs of words of a given length (usually 3 residues for proteins) for which the

cumulative score is at leastT. A word satisfying this condition is called a hit. Scores

are taken from a standard matrix such as BLOSUM or PAM. In a real scenario, all

the possible words of the protein database are precomputed.

2. If at least two non-overlapping hits within a distanceA are found on the same diag-

onal then the extension of these matches is triggered. If two hits overlap, the most

recent one is ignored. Extending hits is the most consuming part of the algorithm.

3. The second hit is bidirectionally extended with no gaps until its cumulative score

cannot be improved anymore. The extended hit may include other hits and is called

HSP (High scoring Segment Pair).

4. The highest scoring HSP with a score> Sg, a predefined threshold, is further ex-

tended in both directions via a gapped alignment. Only the top scoring HSP is

extended because most of the other HSPs will be included in it.

5. Final alignments for hits for which a gapped extension produced high scores are

re-aligned with relaxed alignment parameters to be further extended. The finalS

score, the overall alignment score, is calculated.

Another scoring system is necessary in order to discriminate between meaningful and

chance alignments. The distribution of ungapped local alignment scores for hits between

a real protein sequence and a set of randomly generated sequences has been shown to

follow a extreme value function (Karlin & Altschul, 1990, 1993; Altschul & Gish, 1996).

Once the right set of parameters to describe this distribution is found, probabilities can

be assigned to new hits according to the probability density function. In other words, the

confidence of a sequence alignment to be meaningful can be measured as the probability

to find at least one random alignment with scorex. This probability is also known as a

P-value and is calculated with equation2.3, whereK is a parameter that depends on the

size of the search space andmn is the product of the lengths of the sequences that are
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compared.λ is the same parameter as in equation2.2.

P(S> x) = 1−e−Kmne−λx
(2.3)

The scoreScan be normalised as shown in equation2.4:

S′ =
λS− lnK

ln2
(in bits) (2.4)

The reliability of an alignment in BLAST and similar programs is usually given as an

e-value, as described in equation2.5. This is the number of expected chance hits with a

score≥ S′.

e(S′) = mn2−S′ (2.5)

This statistical framework has not been mathematically proven to work with gapped

alignments, but computer simulations suggest it is still valid (Karlin & Altschul, 1990,

1993; Altschul & Gish, 1996). The main difference is that in the later caseλ and K

cannot be derived analytically and are therefore empirically approximated.

PSI-BLAST stands for Position Specific Iterative BLAST. Briefly, it is a iterative ver-

sion of BLAST in which a standard scoring matrix is used only for the first iteration and

subsequent iterations work using newly created matrices based on the confident hits found

in the previous round (Altschulet al., 1997). In particular, a position specific scoring ma-

trix (PSSM) is created after every iteration to make the search increasingly specific to the

family of sequences similar to the query. PSSMs aren×20 matrices wheren is the length

of the query sequence. This way, substituting an Alanine residue in position 23 may well

have different costs than exchanging an Alanine in position 45. The use of PSSMs allows

PSI-BLAST to be more sensitive than BLAST in finding remote homologous sequences

(Altschulet al., 1997; Parket al., 1998).

The IMPALA computer program (Schafferet al., 1999) scans a query sequence against

a library of PSSMs produced by PSI-BLAST using the Smith-Waterman (Smith & Water-

man, 1981) method. IMPALA performs similarly to PSI-BLAST in terms of sensitivity

and error rate (Schafferet al., 1999).

2.1.3 From pairwise to multiple alignments

If n≥ 2 proteins are to be simultaneously aligned we need a multiple alignment proce-

dure. The described dynamic programming tools (see Section2.1) are too expensive in
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terms of computing time to be applied in the natural way, by creating a dynamic program-

ming matrix ofn dimensions. The time and space complexity of this approach scales up

asymptotically to the order ofln, wherel is the average length of the sequences involved.

Approximations are then required to generate multiple alignments. A common practical

approximation is to build the multiple alignment in a progressive or hierarchical manner

(Feng & Doolittle, 1987; Waterman, 1995). Instead of aligning all the sequences simul-

taneously, all-against-all pairwise alignments are first calculated to rank or cluster then

proteins in a hierarchical manner. Then these clusters of size≥ 1 are solved independently

and finally they are stacked according to the original ranking on a pairwise manner. In

general, these methods calculate PSSMs for each cluster to score the corresponding pair-

wise alignment between clusters. After two clusters have been merged, a new PSSM is

computed. Clustalw, probably the most popular multiple sequence alignment program,

follows this clustering strategy based on a hierarchical guide tree(Thompsonet al., 1994).

There are many variants of these methods, using sophisticated phylogenetic trees to guide

the clustering or weighting clusters according to their content, but they have hardly been

used for this work.

PSI-BLAST (see Section2.1.2) generates its PSSMs in a different way, by piling up

all the confident hits overlapping the query sequence and counting the mutations and their

frequencies. From this point of view, PSI-BLAST PSSMs are not generated from multiple

alignments, but from stacked significant hits.

A different approach to build sequence profiles are Hidden Markov Models (HMM),

which associates different states (members of multiple sequence alignment and their

residues) and the transitions between these with some probabilities. HMM based methods

have not been directly used in this work.

2.2 Analysis of some alignment techniques in Compara-

tive Modelling

As mentioned in Section1.4.7, sequence alignment errors are critical for the quality of

generated CM models. Therefore part of this project was dedicated to study this problem,

implement alignment algorithms and test them. Comparative Modelling relies on the ob-

servation that homologous proteins have similar structure, with differences proportional

to the degree of their amino acid sequence identity (Chothia & Lesk, 1986), as can be seen

in Figure1.9. This means that model accuracy is, at least with current alignment methods,

highly dependent on the sequence similarity between query and template. Furthermore,
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this logarithmic trend is not fully consistent, excellent models can often be constructed

with very remote templates, or relatively bad ones based on very close homologous pro-

teins. The initial goal we had in mind was to progress in the following directions:

i Improve sequence alignment procedures or at least learn from them.

ii Implement a reasonable measure of reliability and quality for our models based on

the alignment to the template.

A way to evaluate alignment procedures is to produce a set of alignments and then

compare them to alignments that are supposed to be correct. In this work, a correct

alignment should be one that faithfully represents a structural superimposition of protein

structures, one that matches residues in the partner sequence and that are neighbours in

Cartesian space. Other definitions for the correctness of alignments are possible, such as

the correct pairing of functionally important residues, but this is also expected to happen

if the previous criterium holds. Since the alignment sets how spatial coordinates from the

template would be adopted in the final model, this standard was adopted. Table2.2 and

Figure2.2show two complementary views for the same alignment, at the sequence level

and in Cartesian space.

1d5ya FKIETTPESRYLAQIGDSVSLTCSTTGCESPFFSWRTQIDSPLNGK

1bowa -QTSVSP-SKVILPRGGSVLVTCSTSCDQPKLLGIET----PLPKK

1d5ya VT--NEGTTSTLTMNPVSFGNEHSYLCTATCESRKLEKGIQVEIYS

1bowa ELLLPGNNRKVYELS--NVQEDSQPMCYSNCPDGQSTAKTFLTV--

Table 2.2: Sequence alignment between human adhesion molecules ICAM-1 and VCAM-I. The sequence

identity is 23% over 80 pairs of aligned residues.

As with sequence alignments, structural alignments and superimpositions are not triv-

ial problems and many different answers can be obtained depending on the algorithms

that are tried. At this stage of the project I spent some weeks implementing a C++ pro-

gram for progressive multiple structural alignment, calledmsuper, based on the published

work of Russell & Barton(1992) andGerstein & Levitt(1996). The program turned out

to be important for the whole project, whenever structural superimpositions were needed.

However, we decided not to use it for a benchmark of alignment quality, since as sim-

ilar methods, it is found to be unstable in cases where there is no sequence similarity

at all. Therefore, we preferred an external program, SSAP (Taylor & Orengo, 1989),
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Figure 2.2: Spatial significance of a sequence alignment. The alignment shown in Table2.2 is used to

guide the superimposition of the backbone coordinates of the corresponding PDB structures (1ij9 (Taylor

et al., 2001) and 1d3l (Kolatkaret al., 1999)). Residues are coloured according to their chemical properties

using Rasmol (Sayle & Milner-White, 1995). Despise the low sequence identity between these proteins,

the resultingCα RMSD is 2.46̊A.

a well recognised dynamic programming algorithm which uses both sequence and local

structure information to superimpose and align three-dimension protein structures. For

example, SSAP is used to generate the fold libraries needed by the successful fold recog-

nition program 3D-PSSM(Kelley et al., 2000). An important disadvantage of SSAP is

that the superposition file generated by the program contains only the Cα of each residue

and cannot be applied to more that two structures at a time. Whenever full atomic details

were needed throughout this work, or more than two templates needed to be superim-

posed,msuperwas used (see AppendixA for more details).

After several CASP experiments it is generally accepted that, for templates over 50%

sequence identity, very similar sequence alignments are obtained regardless of the meth-

ods used. However, below this threshold sequence alignments start to diverge from struc-

tural superimpositions. Therefore, remote homologous sequences found to have a very

similar fold in SCOP, cannot be correctly aligned. To understand this problem and to

contribute to solving it, we set up an experiment to test different alignment procedures.

The idea was straightforward: take a pair of proteins from every SCOP family and align

them by sequence and by structure; then compare both alignments, score its agreement

and record their sequence similarity. Several resources were needed:

i Our own dynamic programming implementation (written in C++).

ii Different scoring schemes for sequence and structure matches.

iii A program to compare two alignments and score their agreement.
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iv A test set of random pairs of homologous protein domains (taken from SCOP).

Sequence alignments by dynamic programming. Recent work from several groups

has enhanced the value of using secondary structure information to improve alignment

sensitivity - the ability to recognise remote homologous sequences (see for example (Kel-

ley et al., 2000)). The secondary structure (SS) of a template is easy to assign auto-

matically using popular programs such as DSSP (Kabsch & Sander, 1983) and STRIDE

(Frishman & Argos, 1995). For the query sequence, however, prediction programs are

needed. Although a number of different algorithms have been used, often these programs

are based on neural networks and predict a three-state secondary structure: helical(H)

residues, strand(E) residues and coiled(C) residues. Examples are PSI-PRED (Jones,

1999) and PHD (Rost, 1996). The accuracy of these predictors has been established

around 70-80% (Rost & Eyrich, 2001). In addition, it has recently been recognised that

the use of sequence profiles can increase the sensitivity of alignments, instead of using

standard scoring matrices such as BLOSUM or PAM. We decided to incorporate these

two concepts into our sequence alignment implementations with the aim of improving

alignment accuracy, not necessarily sensitivity. To generate sequence profiles for each

sequence PSI-BLAST was used, generating simultaneously the checkpoint file needed by

PSI-PRED to do a SS prediction.

Calculating alignment shifts and scoring alignments. To compare our alignments to

those generated by SSAP, a perl program was written following a shift scoring function

published byCline (2000), the shift score. This function scores the similarity between

two alignments in the range -0.2 (nothing in common) to 1 (identical).

2.2.1 Alignment comparisons

After developing the tools, three conceptually different sequence alignment protocols

were tested: pairwiseClustalw as a standard global alignment program (with default

Gonnet matrix),Profile1andProfile2. All three methods use Needleman-Wunch-related

algorithms.Profile1 is a global alignment method that uses the a PSI-BLAST-generated

PSSM of the query and SS information for both the query (predictedSSq) and the template

(SSt , as defined by DSSP). Matches across the dynamic programming matrix are scored

combining the log-odds of the relevant row of the PSSM and a SS agreement criterion

(add +1 ifSSq = SSt). Profile2 is a method to align the query PSSM to a PSSM of the

template, similar to that published byRychlewskiet al. (2000), adding the weight of the
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SS matching as before. To calculate a match score in the dynamic programming matrix,

the dot product of the relevant PSSM rows is taken. A more graphical explanation of these

methods is shown in Table2.3.

Clustalw (Gonnet) Profile1 Profile2

sequence to sequence profile+SSq to sequence+SSt profile+SSq to profile+SSt

HHHCCCCC HHHHHCCC

... ...

VFIWQSSW AYLFQST-

AYIWQS-- AYIWQS--

AYLWQSTW AYLWQSTW AYLWQSTW

AYVWQS-Y AYVWQS-Y AYVWQS-Y

AYLWNSTW

VYVWNT-F

...

HHHHCCCC HHHHCCCC

232843-2 232832-1 232823-0

Table 2.3: Graphical explanation of the three tested alignment methods, where the query sequence is in

the top half and the template in the bottom half. The secondary structure on top is predicted using PSI-

PRED. For the template, the secondary structure is parsed from the output of the DSSP program. Query

and template are shown in bold. Profile sequences are also shown aligned to them. The last row shows

a hypothetical residue bit-score for each column in the alignment. The average of these values along the

alignment is defined as the bit-score.

These methods were benchmarked against SSAP using the shift score function. From

the initial set of 428 alignments of pairs of SCOP domains, we first had to identify random

alignments. Inspecting the distribution of scores we found a strong association between

bad shift scores (less than 0.5) and the dynamic programming score divided by the align-

ment length. This score was calledbit-score, since it is given in bits. By taking a bit-score

cut-off of 2.0, at least 94.5% of the alignments over this value had good shift scores (over

0.5), but at the cost of missing 5% of relatively good alignments. Therefore, the first

finding from this experiment was a numeric filter to reject incorrect alignments. The

remaining 240 alignments with bit-score> 2.0 are shown in Figure2.3.

Overall, theProfile1 method seems to be better, particularly in the lower end of the

% sequence identity interval, as shown in Table2.4 and Figure2.3. As the distributions

of scores are not normal, it is not possible to assess the statistical significance of these
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 240 pairs of SCOP domains aligned with bit-score over 2.0
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Figure 2.3: Clustalw, Profile1 and Profile2 alignment procedures as compared to SSAP structural align-

ments. Least-squares logarithmic fitted functions are depicted using the same colour scheme. The correla-

tion between the shift score and % sequence identity is below 40% in all cases. Almost identical results are

obtained ifmsuperalignments are used as a reference (see AppendixA)

average differences using a t-test. In addition, the correlation between the shift score and

the % sequence identity is quite poor (under 0.4%) for the three methods, allowing no

simple rules to be deduced based on % sequence identity to predict alignment errors at

the low end of the % sequence identity interval. However, the correlation of the bit-score

and the shift score is much better, around 0.7-0.75 for the three methods when fitted to a

logarithmic function.

It was observed that in some cases theProfile1protocol underperformed if compared

to the other two procedures, suggesting, as also reported byElofsson(2002), that, more

generally, no single alignment procedure is consistently better than the others and better

alignments would be obtained by probing different methods and being able to identify the

best for each particular case. With the data we have, the bit-score is the best estimate we

can make as to how good an alignment is in terms of agreement to the reference structural

alignment.
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% sequence identity [0-100] (n=240) % sequence identity [0-35] (n=133)

Clustalw 0.82 0.69

Profile2 0.85 0.73

Profile1 0.88 0.80

Table 2.4: Average shift scores of three sequence alignment procedures as compared to SSAP reference

structural alignments.

2.3 Splitting protein domains

After exploring some of the complexities of sequence alignments, and having imple-

mented several alignment routines, we now considered another important problem in

modelling: the search for the best templates. For this purpose a good sensitivity is re-

quired, to find remote templates, and also accuracy, to get the correct alignments. Fur-

thermore, biological knowledge of the candidate query protein would probably improve

the selection of suitable template(s), but this is not easily obtained from a sequence match-

ing procedure such as PSI-BLAST. This situation is even more complex, since proteins

may have several domains and therefore different template(s) may be necessary to model

each of them. In order to address these problems, once again different procedures were

initially considered:

i Construct a library of protein domain families (from SCOP) where each family

is represented by a multiple structural alignment and scan it with our own profile

alignment procedure, written in C++.

ii Use the PFAM library (Sonnhammeret al., 1998) of protein domain families where

each family is represented by a multiple alignment, derived from a manually in-

spected seed sequence alignment, and scan it using the profile search program IM-

PALA.

iii Construct our own database merging the PDB and the PFAM sequences and scan it

with PSI-BLAST.

The first procedure relied on maintaining a large library of protein multiple structural

alignments. Although our alignment routines were ready to test, we didn’t favour this ap-

proach as this complex library, in a real scenario, would need weekly updates to include

new proteins added to the PDB into their corresponding multiple structural alignment.

This posed several problems, such as splitting these new PDB entries into their corre-

sponding SCOP domains (precisely the problem we were trying to solve) and generating,
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automatically, a large number of structural alignments. This did not seem an easy task.

Another important drawback was that this sort of library would not represent the whole

protein sequence database, because SCOP and the PDB are only a small fraction of it.

Eventually this path was not further explored.

The second procedure seemed easier to benchmark since PFAM is updated frequently

and family multiple alignments are already built by their developers. In addition, many

families already contain information about which PDB structures are related by homol-

ogy. Furthermore, PFAM covers many protein families for which no structural informa-

tion is available, families not represented in SCOP. By using PFAM the tasks of splitting

domains and finding templates are separated. Domains can be confidently identified even

when suitable modelling templates cannot be found. PFAM A+B were downloaded and

300 random protein sequences, 105 of which sharing less than 30% identity to their re-

spective PFAM families, were extracted. Attempts were made to match each of these test

sequences to the right PFAM family out of the total number of 3360 families (PFAM7.0),

by using the program IMPALA with default parameters. It must be stated that these 300

sequences were removed from their original PFAM families to make the experiment more

realistic. Results are shown in table2.5:

PFAM library inclusion of NCB low-complexity filtering best hit = correct family

PFAM(A+B) + + 290/300

PFAM(A+B) - + 290/300

PFAM(A+B) + - 293/300

PFAM(A+B) - - 293/300

Table 2.5: Performance of IMPALA identifying 300 random PFAM protein families. NCB are non-

conserved blocks in a PFAM multiple alignment, usually shown in lower case in their original Stockholm

format. When indicated, low-complexity regions were masked during the IMPALA search. In either case,

the IMPALA procedure failed to correctly identify the PFAM families for 7 to 10 test sequences.

The third and final procedure consisted of constructing a single sequence database by

merging the PDB (in fasta sequence format) and all the sequences extracted from PFAM

A+B families, storing in their headers the family they had been extracted from. This

database was named dPFAMPDB. The same 300 test sequences were scanned using

PSI-BLAST with default parameters and in this case all of them were correctly assigned

to their respective families. The added advantage of this method is that it potentially per-

mits the identification of multiple PFAM domains in a single PSI-BLAST search. Since

sequences in the database are labelled according to their respective PFAM families, by



ALIGNMENTS AND TEMPLATES IN COMPARATIVE M ODELLING 61

processing the PSI-BLAST output it is possible to read the most probable domain assign-

ments from the N to the C-terminus of the query sequence. Two iterations of PSI-BLAST

are enough for this purpose. Another advantage is that PFAM families often contain PDB

templates that the PSI-BLAST search alone cannot identify. However, if at least one se-

quence in the family is confidently aligned to the query, with a goode-value, then the

template could be matched as well, by collapsing the multiple alignment, as shown in

Table2.6.

2.4 Domain Fishing, a first step in Comparative Mod-

elling

As a way to make these methods, described in the previous Sections, available to the

community, we decided to design a web server implementing these tools. The server

aims to help the user in the process of selecting and aligning templates for Comparative

Modelling tasks. The program is called DomainFishing and has been live on the World

Wide Web (http://www.bmm.icnet.uk) since November,2001, completing more than 8000

jobs in its first 20 months.

This server, made public through the journalBioinformatics(Contreras-Moreira &

Bates, 2002), is best described in the flow chart in Figure2.4.

These are the main steps:

1. First the query sequence is scanned against dPFAMPDB with two iterations of

PSI-BLAST, reporting in the output all the hits, to allow identification of every

domain in cases where many hits match the same region of the query. For example,

if the query protein contains an immunoglobulin domain it will match thousands of

sequences in dPFAMPDB and those could hide remaining domains, by flooding,

in the output.

2. Definition of domains. Given that PSI-BLAST hits are ranked according to their

e-values, the output is scanned recording non-overlapping hits that maximise the

coverage of their PFAM families.

3. Possible functional annotation for each domain is extracted from the relevant PFAM

families.

4. PDB templates are extracted from the PSI-BLAST output, and from the domain-

defining PFAM families, and mapped to the relevant domains along the query se-

http://www.bmm.icnet.uk
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Q9N629 TPNHLLTLLI-t---KRKICILEAASGDEaksRDAFSVDHIESARLIF...

Q9Y6W6 MTKCSKSHLP-----SQGPVIIDCRPF------MEYNKSHIQGAVHIN...

QQ9AG15 VTESLVALLE--S-gTEKVLLIDSRPF------VEYNTSHILEAININ...

Q9BSH6 TVAWLNEQLElg---NERLLLMDCRPQ------ELYESSHIESAINVA...

Q91790 LKALLAERAH-------KCLILDCRSF------FSFSSCSIVGSSNVR...

DUS1RAT DAGGLRALLRer---AAQCLLLDCRSF------FAFNAGHIVGSVNVR...

Q13524 SHGTLGLPSG------GKCLLLDCRPF------LAHSAGYILGSVNVR...

PYP2 SCHPO TLKSFEEQTE------SVSWIIDLRLH------SKYAVSHIKNAINVS...

PTP3 YEAST TAVELGKIIEtlp--DEKVLLLDVRPF------TEHAKSIITNSIHVC...

Q9P080 VTGHFKTPSKktKssKPKLLVVDIRNS------EDFIRGHISGSINIP...

YOUACAEEL IMQKLSQIEF-----MQKYILIDCRYD------YEYNGGHIKGAQSLF...

TWIN DROME IQGEFDEQLG-s---QGGYEIIDCRYP------YEFLGGHIRGAKNLY...

MPIP DROME LKGEFSDKVA-------SYRIIDCRYP------YEFEGGHIEGAKNLY...

MPI1 XENLA IHGDFSSLVE-------KIFIIDCRYP------YEYDGGHIKGALNLH...

MPI1 HUMAN(1C25) LNGKFANLIK-------EFVIIDCRYP------YEYEGGHIKGAVNLH...

Q9IAA8 ----------------------DCRYP------YEYEGGHIKGALNLH...

MPI2 RAT LTGKFSNIVE-------KFVIVDCRYP------YEYEGGHIKNAVNLP...

UBP4 YEAST SANSASSQME--------ILLIDIRSR------LEFNKSHIDTKNIIC...

PYP1 SCHPO LQEYLDKEAW-----KDDTLIIDLRPV------SEFSKSRIKGSVNLS...

query SCLWLRRELSPPRPRLLLLDCRSRELYESARIGGALSVA...

Q9BSH6 TVAWLNEQLELGNERLLLMDCRPQELYESSHIESAINVA...

||| || | | ...

MPI1 HUMAN(1C25) LNGKFANLIK----EFVIIDCRYPYEYEGGHIKGAVNLH...

Table 2.6: Finding and aligning templates within PFAM families. Dual specificity human phosphatase

9 (DUS9HUMAN) was used to scan dPFAMPDB. The N-terminus can be annotated, through PFAM,

as a Rhodanese-like domain, PFAM family PF00581. A simplified version of this family is shown here

on top. Q9BSH6 was confidently matched by PSI-BLAST with ane-value of 1e−45. The PDB template

1C25 (Faumanet al., 1998a), not found by PSI-BLAST, is also highlighted in bold. The second box of the

table shows the PSI-BLAST alignment of the query and Q9BSH6. By collapsing the multiple alignment,

a pairwise alignment to 1C25 can be obtained, yielding just 16% sequence identity. The quality of these

alignments relies on the quality of PFAM multiple alignments.

quence.

5. Since domain definitions in SCOP are related to their spatial structure in experimen-

tally solved structures they are perhaps more useful from a modelling perspective,
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Figure 2.4: Flow chart of Domain Fishing.

so domain definitions from SCOP are used to trim template boundaries. Extra tem-

plates, not found by sequence similarity in the initial PSI-BLAST search, may be

obtained from the SCOP families containing our templates.

6. The query sequence is split into the PFAM-defined domains and each of them is

iteratively aligned to all the available templates. In particular, following the lines

suggested in Section2.2.1, different alignment procedures are used (using tem-

plate’s PSSM, query’s PSSM or both, see Section2.7 for more details), trying to

extend the query sequence to maximise the template coverage. Bit-scores are used

to discriminate between them. Eventually only one alignment per template is re-

ported. Templates are ranked according to the product of % sequence identity to

the query and the coverage of it (coverIDscore). When possible, crystallographic

resolution is used to differentiate identicalcoverIDscores.
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7. Results are sent back to the user using a HTML report. Rasmol-based three-

dimensional backbone models corresponding to each alignment are also provided,

with residues coloured according to the relative conservation within the domain’s

protein family. These models can also be useful to detect alignment errors, as shown

in Figure2.5. Details on how this is done are given in Section2.7. Rasmol was cho-

sen because it is available in virtually all platforms. In addition, a link to use these

alignments to build models with 3D-JIGSAW is attached. These alignments can

also be edited by the user.

An example of DomainFishing is now shown. Dual specificity human phosphatase 9

(DUS9 HUMAN), taken from the SWISS-PROT database (Boeckmannet al., 2003), was

selected to be used as input for DomainFishing. The program identified two domains: a

rhodanese-like domain (PFAM family PF00581) for the first 130 residues and a catalytic

domain of a dual specificity phosphatase (PF00782) for residues in the interval [200-340].

For the N-terminal domain, the template 1HZM (Farooqet al., 2001), a 44% identical

ERK2 domain of MKP-3, is selected on top of the list. For the C-terminal domain, 1MKP

(Stewartet al., 1999) is selected with 80% of sequence identity. The alignment of the

C-terminal domain to 1HZM is shown in Table2.7.

The presented tools have also been incorporated into the Comparative Modelling web

server of the laboratory, 3D-JIGSAW (Bates & Sternberg, 1999), to find, align and rank

templates and define domains. In the interactive mode the server allows the user to select

templates, to manually edit alignments and to actually build models. In the automatic

mode these steps require no intervention, the process is completely automatic. Since then

3D-JIGSAW has joined the EVA evaluation project (Eyrichet al., 2001), for which some

results were shown in Figure1.9. As of September 2003, the overall performances of

the servers participating in EVA are summarized in Table2.8. In this comparison, 3D-

JIGSAW, using these alignment procedures, is shown to be as accurate on average as the

other servers, but with the ability to perform equally on difficult cases.

2.5 Conclusions

During this part of the work we observed that, as far as protein Comparative Modelling

is concerned, none of our sequence alignment techniques can be considered to be perfect,

in agreement with observations in the literature. Although it is possible to rank them,

in certain situations ‘weaker’ techniques can perform better than ‘stronger’ ones. These

facts suggest that several alignment techniques should be used to generate a variety of
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Query residues 1 to 145

% identity 44

bit-score 3.58

%CoverID 42

Resolution (NMR)

Parameters 1 0 1 0.25 1

query ------------MEGLGRSCLWLRRELSPPRPRLLLLDCRSRELYESARIGGALSVALPA

+++++++||+++|+ +++||||+|||+ |||||++| |++||+|

1hzm A MIDTLRPVPFASEMAISKTVAWLNEQLELGNERLLLMDCRPQELYESSHIESAINVAIPG

ACCI 629519585612315313111156515723774111111445486126211211112175

SSqp ------------CCCHHHHHHHHHHHHCCCCCCEEEEECCCHHHHHCCCEEEEECCCCHH

SStk CCCCCCCCCCCCCCCCCCCCCCHHHHHHHCCCCCEEECCCCCHHHHHHCCCCCCCCCCCC

query LLLRRLRRGSLSVRALLPGPP-----LQPPPPAPVLLYDQGGGRRRRGEAEAEAEEWEAE

++||||++|+|+||||+++++ +++ +|+|||+ +++ ++|++++|

1hzm A IMLRRLQKGNLPVRALFTRGEDRDRFTRRCGTDTVVLYDESSSD--------WNENTGGE

ACCI 11654123371644111585514521475483511111112311--------16656983

SSqp HHHHHHCCCCCCCCCCCCCHH-----HCCEEEEEEEEEECCCCCCCHHHHHHCCCCCCCH

SStk HHHHCCCCCCCCCCCCCCCCHHHHHHHHCCCCCCEEECCCCCCC--------CCCCCCCC

query SVLGTLLQKLREEGYLAYYLQGGFSRFQAECPHLCETSLAGR

|+||+|| ||++||++|+||+||||+||||++ +|||+|+|+

1hzm A SLLGLLLKKLKDEGCRAFYLEGGFSKFQAEFSLHCETNLDGS

ACCI 64126117314877241111252866247324641253255*

SSqp HHHHHHHHHCCCCCCCEEEECCCHHHHHHHHHHHCCCCCCCC

SStk CHHHHHHHHHHHCCCCCEECCCCHHHHHHHHCCCCCCCCCCC

Table 2.7: DomainFishing sample alignment of DUS9HUMAN rhodanese-like domain and its closest

template. According to Figure1.9, a model based on this alignment is predicted to have a RMSD to its

experimentally determined structure of less than 2Å on the best case and about 2.8Å on average. Note the

differences between the predicted and the template three-state secondary structure. ACCI is the relative

solvent accessibility for each residue of the template, SSqp is the predicted secondary structure of query

and SStk is the DSSP secondary structure of the template, where H=helix, E=beta-strand and C=coil. The

aligmnent parameters are: SSmatch, SSmismatch, gapopening, gapextending, PSSM used (template in

this case).| and + signs mark identical and similar residues according to the sequence profile(s) used, that

is, residue bit-scores.
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server chains weeks %cover %equiv.positions difficulty

3djigsaw 4496 59 96 88 22

cphmodels 1228 72 96 87 8

esypred 5346 77 96 86 21

sdsc1 2667 48 93 80 17

SwissModel 9316 153 93 87 16

Table 2.8: Performances of Comparative Modelling servers participating in EVA. %cover is the percentage

of modelled residues with respect to target length. %equiv.positions is the percentage of equivalentCα po-

sitions within 3.5̊Abetween the optimally superimposed target and model structure. Difficulty ranges from 0

(easy cases) to 100 (difficult cases). The difficulty level is defined as the percentage of missaligned residues

between an optimal structural superimposition alignment and a pairwise sequence alignment method for

the modelled region. If the sequence alignment is identical to the structural alignment, the difficulty is 0.

If there is no similarity in any structural alignment (using the program CE (Shindyalov & Bourne, 1998)),

the difficulty is 100. Note that 3D-JIGSAW uses the DomainFishing algorithm to find, select and align

templates.

Figure 2.5: Rasmol-based conservation map of the DUS9HUMAN rhodanese-like domain modelled with

1C25 (Faumanet al., 1998b), as aligned by DomainFishing. The proteinCα trace is coloured according to

the conservation of each residue in the stacked multiple alignment calculated by PSI-BLAST, where blue

residues are not particularly conserved and red are the most conserved. Asp26,Cys26 and Arg27, conserved

catalytic residues in the domain family, are in red. Note that the residues are hotter as they get closer to

this functional center of the molecule. This suggests that the alignment quality within this family will be

higher close to these residues, and lower in other areas, since there the sequence is much less conserved.

The overall bit-score of this alignment is 2.9, despite just 17% sequence identity.

alignments. However, we should then be able to distinguish good from bad alignments.

Evaluators such as sequence identity, coverage orbit-scorescould help. We explore these
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issues further in the next chapter. Despite these limitations, the web server DomainFish-

ing was designed and implemented to help the user in the first steps of a Comparative

Modelling job: defining domains, finding templates and aligning them. This tool is also

linked to the Comparative Modelling server 3D-JIGSAW, so the user can build protein

models easily and interactively, with the aid of some quality evaluators such asbit-scores

or 3D-conservation maps. Both servers are extensively used by the community and their

performance can be monitored through the EVA automatic continuous evaluation. 59

weeks of automatic evaluation show that our alignment procedures, together with 3D-

JIGSAW methods for actually building models, are among the best servers in terms of

coverage and accuracy , with the ability to model more difficult cases.

2.6 Possible developments

The use of residue bit-scores allows mapping along a sequence alignment regions with

high or low confidence. This data could then be used to automatically detect weakly

aligned parts of the alignment, indicating regions where alternative alignments should be

considered. Indeed, recent work explores this possibility (Tresset al., 2003).

We have noticed that DomainFishing usually underperforms in finding and correctly

aligning very remote homologous templates when compared to Fold Recognition pro-

grams. Improving these tasks would enhance the server as it stands now.

Often DomainFishing reports several short PFAM domains that taken together in

space make up a single structural domain defined by SCOP. In these cases it may be a

good idea to generate a unique alignment comprising all these PFAM domains.

The current implementation of the program treats templates found through the PSI-

BLAST search of dPFAMPDB and those inherited from PFAM families differently. This

produces two separate lists of templates and domain boundaries. It may be better to

generate a single list of templates, including alternative alignments for each. However,

re-ranking of templates in this list would not be trivial as it may require feedback from

the three-dimensional structures and has to consider coverage of one or more domains

and alignment accuracy. This issue will be partially addressed in the next chapter.

When several domains in a protein are modelled independently, usually they are in

different spatial frames of reference. A possible improvement for this tool would be to

automatically derive restraints at the sequence level and use also the available multido-

main structure information from templates to calculate the most probable conformations

for each individual domain relative to each other.
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2.7 Some methodological details

dPFAM PDB is created by merging PFAM A+B and the amino acid sequences from the

PDB structures, particularly the sequence as contained in the ATOM records, the experi-

mental sequence. Low complexity regions are filtered out from these sequences using the

program SEG (Wootton & Federhen, 1996), since they may affect PSI-BLAST alignment

scores.

The DomainFishing PSI-BLAST search is done with this command:

blastpgp -i query -d dPFAMPDB -b 100000 -v 100000 -j 2 -s T -C chkfile -Q pssmfile

using NCBI blast version 2.2.5. -b and -v are used to display all the generated alignments,

not just the top 1000; -j 2 for two iterations and -s T to filter the query for low complex-

ity. The checkpoint filechkfileis kept to predict the three-state secondary structure with

PSI-PRED 2.3. Thepssmfileis used to align domains in the query to templates using the

Profile1andProfile2methods. It is also used, as mentioned in Section2.4, to extract the

information per residue, as an indirect measure of conservation (column 23 in the file).

This information is scaled in the range [0-99] and it is stored in the temperature factor col-

umn (PDB format) in the primitive three-dimensional models for each alignment. These

primitive models are built by inheriting the backbone coordinates of the aligned template.

SSAP sequence alignments were obtained by processing the original output from the

program and filling the missing, not aligned residues, as insertions. This script was written

in perl.

To transform the original seven-state DSSP secondary structure assignments to three-

states, alpha,π and 310 helices are considered just as helices, extended strands are con-

served and the remaining states are labelled as coiled.

The global dynamic programming routinesProfile1andProfile2implemented for this

work include the criterion first proposed byGotoh(1982) to speed up the calculation of

gaps in equation2.1. For efficiency purposes, when different alignment procedures are

going to be tested on the same pair of protein sequences, as DomainFishing does, the

dynamic programming and the trace-back matrices are allocated only once. Then the

process iterates through a set of parameters, as mentioned in Figure2.7, recalculating

these matrices each round. Several alignment procedures can be attempted:

When templates were aligned to PFAM-defined domains in the query, efforts were

made to extend the alignment. Since templates are trimmed according to SCOP annota-

tion, query domains were extended towards both the N and C termini in order to cover

the entire template. In DomainFishing, extended alignments are only preferred if their

bit-score is at least 60% of the original, not extended, bit-score.
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iteration SSq 6= SSt pssmq pssmt comment

1 0 + - Profile1

2 -1 + -

3 0 - +

4 -1 - +

5 0 + + Profile2

6 -1 + +

7 0 + + pssmq+pssmt
2 , as in 3D-PSSM

8 -1 + +

Table 2.9: Dynamic programming parameters used in this work and in DomainFishing. Gap opening

and extending costs were kept constant, 1 and 0.25 respectively, and secondary structure matches were

scored with +1 (other values were tested with no apparent difference). Procedures that require the pssm for

the template (pssmt ) are only performed if those profiles are kept in a library, otherwise they will require

PSI-BLAST to be run for every template. The 3D-PSSM way of combining information from two PSSMs

was not extensively benchmarked in this work, since that is published work (Kelley et al., 2000) and the

performance of that method was outstanding, for example, in CASP4 (Bateset al., 2001).
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Chapter 3

Recombination of protein models

In the next three Sections some experiments that led us to test a new approach in Com-

parative Modelling are described. In particular, we concentrated on the first three steps of

the generic comparative modelling procedure, as shown in Figure1.7: template selection,

query to template alignment and single/multiple template modelling. For this, the pro-

gram 3D-JIGSAW was used, which has been shown to be competitive in previous CASP

experiments (Bates & Sternberg, 1999; Bateset al., 2001) and in EVA (see Figure1.9).

However, we do not consider that the results presented here are significantly sensitive

to the choice of a particular CM program. The remaining Sections are dedicated to the

presentation and benchmarking of the new approach, termedin silico Protein Recombi-

nation. Unless otherwise stated, in the following experiments a minimum difference of

0.6Å was used to compare RMSD measures. As mentioned in Sections1.2.1and1.2.2,

this value has been found to be the average backbone variability observed between protein

structures solved under different crystal lattices or when comparing NMR and crystallo-

graphic structures.

3.1 Sorting templates

In Sections1.4and2.6some of the difficulties of correctly sorting Comparative Modelling

templates were introduced. A more thorough investigation of this is now presented here,

since this is still considered, at least within the CASP community, to be a major problem

affecting the quality of comparative models (Tramontanoet al., 2001).

Chothia & Lesk(1986) quantified the principle of “similar protein sequences have

similar folds” on a small number of pairs of proteins. For each pair, they defined the

protein core as the fraction of residues that can be superimposed within 3Å of RMSD,
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usingCα coordinates. Finally, they proposed a function to relate sequence identity and

structural similarity, Equation3.1, by least-squares fitting the data they had (see also

Equation3.5).

RMSDexpected= 0.40e1.87( 100−%sequenceidentity
100 ) (3.1)

The data shown in Figure1.9would fit to a similar function. Thus, it seemed reason-

able to rank the possible templates to build a model using their sequence identity to the

query. Indeed, one of the most successful programs for comparative modelling, Swiss-

Model(Guexet al., 1999), weights the contribution of each template to the final model

using exactly this criterion. An experiment was set to further test the validity of this ap-

proach. Using 3D-JIGSAW, models for 392 SCOP domains were built using up to four

different templates. Each quartet of models was then compared to the experimental struc-

ture, see Figure3.1. This trivial experiment allowed us to estimate the difficulty of se-

lecting templates. Within this dataset, errors in choosing the optimal template are equally

likely for each of the sequence identity ranges used, with a frequency of approximately

25%. If structural alignments are used instead of 3D-JIGSAW sequence alignments, se-

quence identity is indeed a good template classifier, suggesting that alignment errors mask

the identification of the best template.

Similar difficulties are encountered if templates are ranked by using PSI-BLASTe-

values, based on similarity scores, as shown in Section3.6.3. Being unable to routinely

identify the optimal CM templates suggest that using several templates might be neces-

sary. This will be discussed in Section3.3.

3.2 Optimally aligning the templates

As seen in the previous chapter, the main information types usually available to calculate

alignments are protein sequence and secondary structure, and the most used algorithmic

approach is dynamic programming. In this Section we analyse:

i How often optimalProfile1sequence alignments between query and template, with

parameters shown in the first row of Table2.9, correspond to three-dimensional

models with minimum RMSDs to their experimental structure. In other words,

how often our best sequence alignments correspond to minimum RMSD models.

ii How often alternative trace-backs, suboptimal in a dynamic programming context,

yield better models. In other words, how important is alignment variability for
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Figure 3.1: Selecting CM templates by sequence identity. For each of the four sequence identity bins,

up to 4 potential templates to build a model are ranked according to their %sequence identity to the query

sequence. A model is constructed from each and then compared to the experimental structure. The bars

represent how often the first, the second, the third or the fourth template yield the best model in terms of

RMSD.

Comparative Modelling accuracy. For this we used the procedure published by

Saqiet al. (1992), explained in Section3.11.

58 random SCOP domains were picked for this analysis. Using a simple procedure

explained in Section3.11, one optimal and four suboptimal alignments (numbered from

1 to 5) were produced for each of the 58 templates, which had sequence identities in the

range [15-82]. For each of these alignments a model was constructed using 3D-JIGSAW

and then compared to its corresponding experimental structure. Results are shown in

Table3.1.
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Table 3.1: Alternative alignments and RMSD of subsequent models for 58 SCOP domains. Alignment

methods are reported in the left column, where 1 stands for the optimalProfile1 alignment and 2,3,4,5

correspond to subsequent suboptimal alignments, increasingly different from 1. RMSD differences between

models are of at least 0.2Å. If a RMSD cutoff of 0.6̊A is used, still 10 out 58 cases are better modelled

using a suboptimal alignment.

alignment Cα RMSD SCOP domain % sequence identity

1 2.68 d1eema2 12

3 2.41 d1hqoa2 15

2 4.51 d1f2ea2 17

2 5.84 d1vcba 17

1 3.26 d1qqta1 18

1 3.97 d1ndda 18

1 4.47 d1fb3a1 18

1 4.78 d1gawa1 18

1 6.72 d2phla2 18

4 3.29 d1ubi 18

1 2.69 d1axda2 19

1 2.72 d1a0fa2 19

1 2.89 d1ljra2 19

1 4.80 d1ndh1 19

3 3.23 d1qfza1 19

4 3.49 d1c3ta 19

1 2.10 d1gnwa2 20

1 4.13 d1bfd2 20

1 4.67 d1fnc1 20

2 4.31 d1que1 20

2 4.65 d2cnd1 20

1 3.15 d1aw92 21

1 5.13 d2caua2 21

1 5.63 d1psra 21

1 2.36 d1gsea2 22

1 3.13 d1pmt2 22

2 2.56 d1duga2 22

3 3.10 d1poxa2 22

1 2.19 d1f3ba2 23

(continued on next page)
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Table 3.1:

(continued from previous page)
alignment Cα RMSD SCOP domain % sequence identity

1 3.50 d1bt0a 23

2 3.42 d1fdr1 23

1 2.44 d1gula2 24

1 2.72 d1fhe2 24

1 4.02 d1a8p1 24

1 5.53 d1acf 24

1 4.61 d1qlsa 25

2 2.71 d1pd212 26

1 2.42 d1b48a2 27

2 4.20 d1mr8a 27

1 2.51 d2fhea2 28

1 5.58 d1f2ka 28

1 5.30 d1a4pa 29

1 2.76 d3gtub2 30

1 5.49 d1ypra 30

2 2.60 d1hna2 30

2 2.72 d2gsta2 30

1 3.40 d1gsua2 32

1 4.61 d1cqa 34

1 4.90 d1g5ua 34

1 2.49 d2gsq2 35

1 4.65 d1e8aa 35

1 2.96 d1zpda2 38

1 4.24 d3nul 40

1 5.17 d1mho 41

1 3.20 d1dgwa 49

3 3.59 d1euvb 51

1 2.07 d2gsra2 81

1 1.15 d1glqa2 82



RECOMBINATION OF PROTEIN MODELS 75

In 42 cases the highest sequence identity alignment provided the lowest RMSD model,

but the remaining 16 cases would have been more accurately modelled using a subopti-

mal alignment. These suboptimal alignments have a range of sequence identities to their

templates from 15% to 51%, considered to be the most problematic for alignments (see

Section2.2). These results suggest that suboptimal alignments (and perhaps other alterna-

tive alignments) should be routinely considered in model construction rather than relying

on the optimal dynamic programming sequence alignment. Indeed, Comparative Mod-

elling servers such as EsyPred3D (Lambertet al., 2002) try to improve its performance

by considering alternative and consensus alignments. Of course this raises the question of

how to identify the best alignment. At the sequence level the bit-score could be used, but

it seems preferable to have a three-dimensional criterion, allowing models obtained from

unknown alignments, for instance from web servers not returning alignments or evenab

initio models, to be compared.

3.3 Comparative Modelling: one or more templates?

In theory, building comparative models from more than one template could improve their

accuracy since more conformational space for the backbone can be sampled. It could ac-

tually be the key to calculate better protein models than any of the templates used. How-

ever, analysis of CASP4 results showed that only very occasionally were multi-template

models more accurate than single-template ones. The reasons for this are the choice of

templates (reviewed in Section3.1) and sequence alignment errors (Tramontanoet al.,

2001; Venclovas, 2001). As the limited number of targets for comparative modelling

in CASP4 precluded definitive conclusions, we performed a more exhaustive but simple

experiment using 3D-JIGSAW:

i From each of 271 SCOP families, one protein domain (the query) was randomly se-

lected to be modelled, the remainder were used as potential templates. Two different

models were constructed, one using the template with the highest sequence identity

to the query, as aligned withProfile1, and the other using up to 5 templates. In order

to minimise alignment errors, each query was aligned to its respective template(s)

on the basis of their known atomic coordinates.

ii Both models were compared to the experimental structure and scored according to

RMSD.

The results presented in Figure3.2 show that 3D-JIGSAW single-template compar-

ative models tend to be more accurate than those built several templates. It can be con-
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cluded that our current methodology is not taking full advantage of the possibility of using

several templates to build comparative models. In general, multiple-template models are

no better than their corresponding ideal single-template models and, indeed, can be con-

siderably worse. Only in a marginal proportion of cases using more than one template

was found to be an advantage (improving in the best case 1.66Å), but showing no prefer-

ence for any region in the sequence identity range. On the other hand, multiple-template

models could be significantly worse (1.92Å in the worst case) with a comparable fre-

quency. Because these results are similar to those obtained in CASP4 for all the partici-

pant methodologies, it is tempting to think this is actually a limitation of the generic CM

method itself. In other words, single-template models appear on average more accurate

provided that the optimal template can be identified. Errors in the template(s) alignment

to the query may be disregarded as the reason for this, because the models in this experi-

ment had been built from structural alignments using the programmsuper, introduced in

Section2.2and described in AppendixA.

3.4 The Evolutionary Analogy

So far we have learnt how difficult is to select templates and to get the right alignment.

For these reasons it does not seem reasonable to build models from a single alignment

or template, but instead combining different alignments and templates could be desirable.

We also know that using multiple templates in the same way as 3D-JIGSAW does not

help, and unfortunately CASP4 suggested this to be a generic problem, affecting other

modelling procedures. Therefore a different combination tool was needed to explore se-

quence alignment space and the different conformations adopted by different templates.

This problem can be described as a combinatorial optimisation problem, a field of

study in which many different algorithms have been applied, among them genetic al-

gorithms (Michalewicz, 1996). Genetic algorithms have recently been used for several

applications such as protein folding, protein docking and alignment optimisation (Unger

& Moult , 1993; May & Johnson, 1994, 1995; Pedersen & Moult, 1995; Morris et al.,

1996; Rabow & Scheraga, 1996; Xia & Levitt , 2002; Petersen & Taylor, 2003; John &

Sali, 2003). These algorithms mimic the natural mechanisms of chromosomal mutation

and recombination, used throughout evolution to generate diversity in populations. In a

biological context, a mutation is a spontaneous change in a nucleic acid base that gets

fixed in a tissue, organism or population via the usual DNA replication machinery. Re-

combination is graphically explained in Figure3.3, and consists of a crossover between,

usually, two homologous DNA strands.
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Figure 3.2: Comparing single and multiple-template Comparative Modelling using 3D-JIGSAW and

structural query to template(s) alignments. Models were built using 1 or up to 5 templates from the same

SCOP family. The bars show how often single (S) or multiple-template (M) models had relatively better or

worse RMSD values. The data is split in three % sequence identity bins.

These concepts were taken originally byHolland(1975) to be applied to algorithms.

Basically, to apply a genetic algorithm one needs to represent or code solutions for a

given problem in a string, just like a DNA molecule. Once this step is done in a satisfac-

tory manner, populations of solutions must be created and then the genetic operators of

recombination, mutation and finally selection can do their work. In biological systems,

selection tends to favour fit individuals, those who produce more successful siblings that

carry at least part of their own genes. In algorithmic terms, fitness usually means how

well a solution solves a problem or satisfies some objective function. These concepts are

further illustrated in Table3.2.

In our problem, the idea is to use several templates and different alignments to build a

comparative model, expecting to get an optimised final conformation. How are potential

solutions encoded? The simplest representation for solutions in genetic algorithms is that

shown in Table3.2, binary strings. These strings can be split into smaller fragments or
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Figure 3.3: Genetic recombination or DNA crossover. Recombination events between chromosomes 1

and 2 with single (c1) and double (c2,c3) crossover points are shown. Double or higher order events are

less frequent in real chromosomes.

operator parameter populationt−1 (fitness) populationt (fitness)

crossover recombination rate 10101100 (4) 101011 .10 (5)

01010010 (3) 010100. 00 (2)

mutation mutation rate 10101100 (4) 10100 100 (3)

01010010 (3) 01010010 (3)

selection selection rate 10101100 (4) 10101100 (4)

01010010 (3)

Table 3.2: Basic concepts in genetic algorithms. Potential solutions (chromosomes) inside a population

of size 2 are coded here as binary strings. The fitness function in this simple example corresponds to the

number of bits with value 1 in each string. A crossover point is marked with a period.

genes, each of them responsible for a given property. In our case, proteins can be seen as

implicitly coded solutions, where each residue is a gene and the whole chain is a chromo-

some built by connecting residues with peptide bonds. Therefore, in our context, models

are already encoded solutions, obtained from one template and one sequence alignment:

potential solutioni = comparativemodeli = f (templatej ,alignmentk) (3.2)



RECOMBINATION OF PROTEIN MODELS 79

The fitness of a model would then be the likelihood of its fold calculated in an ob-

jective manner. Since individual solutions are in this case possible conformations for

the three-dimensional structure of the same protein, they have identical sequences and

therefore recombination will still be homologous.

3.5 Implementation of the genetic algorithm:in silico pro-

tein recombination

Taking together these ideas, a genetic algorithm for Comparative Modelling was designed,

namedin silico protein recombination (insilicoPR) (Contreras-Moreiraet al., 2003a). Re-

lated combinatorial methods have been applied in laboratory experiments to generate new,

viable and useful protein folds, via protein fragment shuffling. This supports this kind of

approach (Riechmann & Winter, 2000; Brooet al., 2002).

3.5.1 The method

This method is a genetic algorithm and therefore works at the population level. The

input is here defined as a population of atomic detail three-dimensional models for the

same amino acid sequence, obtained by Comparative Modelling techniques (plus any

other protein modelling methods). The output is another population of models that has

survived several generations of artificial selection based on fitness. Recombinant models

are derived from the original ones through recombination and mutation. The idea behind

this is that the method should be able to conserve good parts from models, combine them

in a linear way and discard the rest. In theory, the method should be capable of correcting

alignment errors by recombining partial solutions if they are present in the population.

Mutation is used to generate novel molecular conformations. The algorithm is outlined in

Figure3.4.

The key steps in this protocol are now described in more detail.

Initial population of models. This population of 1< sizeini ≤ 50 is composed of mod-

els obtained from different templates and/or alignments, and potentially from different

programs and sources. They must be models for the same primary sequence.

Growing the population. Recombination and mutation. The initial population is

grown by randomly selecting pairs of models and applying one of two possible operators:
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Figure 3.4: In silico protein recombination flowchart.Rand 1−Rare probabilities.

recombination and mutation. In this implementation, these operators are complementary.

Every time a pair of models is randomly chosen, they will undergo either recombination

or mutation. Recombination occurs with probabilityR, whilst mutation happens on the

remaining 1−Rcases. Usually values ofR= 0.9 were used.

In case of recombination, a pair of models is superimposed based on their trivial se-

quence alignment. This comprises three steps and is also explained in Table3.3:

i Superimpose them on theirCβ atoms along their entire sequence. Here we use the

msupersuperimposition code, that usesCβ atoms (see AppendixA).

ii Refinement based only on equivalent residues, those pairs whoseCβ atoms are

close in space after the previous step. The tolerance is arbitrarily set to twice the

idealCα-Cβ distance (3.61̊A).

iii The crossover point is randomly sampled from the set of equivalent residues. In

this first implementation, only the subset of equivalent residues not forming regular
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secondary structure elements was considered (as defined by the program STICK

(Taylor, 2001), see Section3.11). Only one recombinant model is generated, which

inherits the N-terminus from one parent and the C-terminus from the other. STICK

is used because it does not compute hydrogen bonds to assign secondary structure

and may therefore be more robust to the conformational changes introduced in the

process than DSSP.

PARENT1 GIFFSTSTGNTTEVADFIGKTLGAKADAPIDVDDVTDPQALKDYDLLFLGAPTWNTG
PARENT2 GIFFSTSTGNTTEVADFIGKTLGAKADAPIDVDDVTDPQALKDYDLLFLGAPTWNTG
SS1 EEEECCCCCHHHHHHCCCCCCCCCCCCCCEEECCCCCCHHHHHHCCCEEEECCCCCC
SS2 EEEECCCCCHHHHHHHHHHHHCCCCCCEEEEHHHCCCCHHHHCCCCEEEECCEECCC
DISTCB 000011242000111000000012120000000001344454443200000000000
CROSSP ----xxx-x------------xxxxx x-------xxx-------xx-----x--xxx

RECOMB GIFFSTSTGNTTEVADFIGKTLGAKADAPIDVDDVTDPQALKDYDLLFLGAPTWNTG
SSR EEEECCCCCHHHHHHCCCCCCCCCCCCEEEEHHHCCCCHHHHCCCCEEEECCEECCC

Table 3.3: Mechanism of recombination of two comparative models. The sequence alignment bewteen

parent1 and parent2, with the distance betweenCβ atoms after refining the initial global fitting, is shown.

The 3-state secondary structure as assigned by STICK is also shown. The CROSSP row shows the set of

potential crossover points (x) in this example, residues that are defined as coil in both models and are less

than 3.61̊A away. Only one of those points, residuer i , will be randomly selected, and a recombinant protein

made of the N-terminus of parent1, up tor i−1, and the C-terminus of parent2, starting fromr i , is generated.

A possible recombinant protein, using the underlined crossover point, is shown in the last two rows. Note

that models need not have the same length.

A mutation event requires as well a pair of proteins, randomly chosen, parent1 and

parent2. The operation comprises three steps. The first two are the same as in recombina-

tion, in order to put the proteins in the same frame of reference and define which residues

are equivalent based on theirCβ −Cβ distances (see Table3.3). The third consists, in

this first implementation, of simply averaging the Cartesian coordinates of the equivalent

residues. For residues that cannot be paired, because of theirCβ −Cβ distance, the co-

ordinates of parent1 are taken. The idea is to create new conformations in-between the

conformations of the chosen parents, something that recombination cannot do. It is a

conservative mutation. Of course this would only work with very similar parents, whose

atomic coordinates are very close after superimposed, otherwise it would be necessary

to rebuild the backbone geometry and the side-chains. This reconstruction code was not

added at the time this mutation operator was implemented for the first time, so we knew

this was a very limited mutation mechanism.

For both recombination and mutation it is necessary to select randomly two mating

protein models. Due to the relatively small populations used in these experiments, mainly

due to computing time limitations, we decided to try the following scheme. Initially, all
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membersp of the populationP have the same probability of being picked for mating:

prob(p) =
1

size(P)
(3.3)

On subsequent generations, these probabilities are proportionally weighted according

to the number of siblingspastSibs(p) that each memberp has had in past generations:

prob(p) =
1+ pastSibs(p)

size(P)+ totalSibs(P)
(3.4)

wheretotalSibs(P) is the cumulative number of generated siblings since evolution

started in this population.

Mutant or recombinant siblings are scanned for bad peptide bond geometries or breaks

in the backbone and discarded if the current population requirements are not met. These

requirements are updated dynamically after each generation in order to force the pop-

ulation to grow in a limited number (maxreprod) of trials. Initially, no more than one

main-chain break or 4% of non-planar peptide bonds are allowed; ifmaxreprod is reached,

these geometry restraints are relaxed.

Using these operators the population grows until the selection size (usually 2×sizeini ≤
sizesel≤ 5×sizeini in our experiments) is reached. At this point the fitness is estimated for

every member of the population. The next step is selection. The fitness functions tested

are presented in Section3.5.2.

Selection step. According to the selection rate, only a given proportion (typically 75%

in these experiments) of protein models is selected to seed future generations. Smaller

selection rates were tried but this one was chosen to avoid potential quality models being

lost prematurely, such as models with small sterical clashes after a recombination event,

with good backbone geometries. This rate gives them the chance to improve their fit-

ness. In our implementation, therefore, selection consists simply of taking the top 75%

members of the population as founders to the next generation.

More sophisticated schemes could be used to reject or accept protein conformations,

for example the Metropolis criterion for Monte Carlo algorithms (Leach, 2001). Accord-

ing to this principle, to estimate the difference in fitness between two members ofP the

temperature of the system should be considered, since small random thermal variations

can be allowed. As will be seen in Section3.5.2, the fitness function used in this work

is perhaps too coarse for this and indeed, inclusion of the Metropolis criterion made no

difference when tested on a few examples.
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Convergence. When the population has converged to similar energies, there is no room

for further generation of variability and the evolution process stops. The criterion used to

define convergence was initially a fixed fitness (energy) cutoff (0.1 kcal mol−1residue−1).

However, it was observed that this cutoff should depend on the range of energies of the

initial populationPini , and therefore the cutoff was set to 10% of the difference in fitness

between the best and the worst founders.

This method, implemented in C++ and running under Linux, requires more computing

time than more traditional Comparative Modelling methodologies. On a 800MHz Pen-

tium III PC, these simulations can take from a few minutes to several hours, depending

on the size and composition of the initial population of models. The algorithm can easily

be parallelised although this has not yet been implemented.

3.5.2 Fitness and potential energy functions

Although choosing reasonable recombination,mutation and selection rates is important,

the algorithm is critically dependent on the quality of the fitness function. This is, after

all, the objective function that the algorithm seeks to optimise, guiding each evolution

experiment. In Section3.4we referred to this function as the thermodynamical likelihood

of a protein conformation. This sort of functions, introduced in Section1.3.4, can be used

to evaluate protein models, since a good model should agree with parameters stored in

established force fields. In addition, it is sometimes useful to define these functions as

tools to compare model conformations and realistic, experimentally measured conforma-

tions. No force fields are needed for this purpose. These fitness functions are useful for

benchmarking. RMSD, mentioned in Section1.2.2, is used as an ideal fitness function in

this work to compare evolving models to experimental PDB structures. To calculate the

RMSD between proteinsp andq they must be first optimally superimposed, to define a

set of pairs of equivalent points or atoms in Cartesian space. On this set of sizeneq points,

usuallyCβ atoms in this work, RMSD is calculated as follows:

RMSD(p,q) =

√
∑

neq
i=1d2

i

neq
(3.5)

wheredi is the distance between the coordinates of atomi in p andq. This ideal fitness

function was used in Section3.6.1.

When no experimental structural information is known for a protein, or is ignored

for a benchmark experiment, potential energy functions can be used to evaluate three-

dimensional models. Many sets of parameters and functions have been used over the
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years (Robson & Osguthorpe, 1979; Sippl, 1990; Joneset al., 1992; Koehl & Levitt, 1999;

Leach, 2001; Russ & Ranganathan, 2002; Wallner & Elofsson, 2003) and so it seemed

reasonable to use them as a starting point. The idea was to obtain a simple function,

easy to manipulate and to calculate, appropriate for the expected accuracy of the genetic

algorithm.

Following work byLevitt (1976) andRobson & Osguthorpe(1979), we tested a sim-

plified representation of proteins, in which residues are made of three backbone pseudo-

atoms (C’,N’,Ca’ obtained from the CO,NH,Cα groups) plus a side-chain centroid, as

shown in Figure3.5.

(a) Full detail (b) Simplification with 4

pseudo-atoms

(c) van der Waals volume

Figure 3.5: Simplified representation of residues for our simple fitness function. Here a Glutamic acid is

shown in (a). In (b) the same residue is simplified, made of just 4 pseudo atoms. The pink atom occupies

the geometric centroid of the side chain and captures part of its chemical properties as tabulated byRobson

& Osguthorpe(1979). The C routines and data structures used in this work to implement this simplified

representations were coded and provided by Paul W.Fitjohn. In (c) the van der Waals volume for the side-

chain is depicted to illustrate how the program NACCESS calculates accessible areas.

Packing of a protein conformationp can then be scored using the atom-atom potentials
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derived byRobson & Osguthorpe(1979), using the following Lennard-Jones Equation:

potential(p) = interatomiccontacts(p) =
natoms

∑
i=1

natoms

∑
j=i+1

(
Ai j

r9
i j

)−(
Bi j

r6
i j

) (in kcal/mol) (3.6)

wherei, j are pairs of pseudo-atoms inp, A and B are statistical values dependent of

the nature ofi, j andi j is the distance between them. Note that these potentials implicitly

include van der Waals, electrostatic and hydrogen bonding.

Preliminary tests showed that this function was not able to correlate energies and

RMSD of protein models consistently. Since proteins fold in solution and explicit solva-

tion terms had been shown to be useful (Holm & Sander, 1992; Koehl & Levitt, 1999),

the following explicit solvation contribution was considered:

solvation(p) =
nres

∑
i=1

(exposedareai ·∆Gsolvi) (in kcal/mol) (3.7)

whereexposedareai is the side-chain solvent accessible area of residuei (as calcu-

lated using the program NACCESS(Hubbard & Thornton, 1993)) and∆Gsolvi are amino

acid solvation free energies tabulated byEisenberg & McLachlan(1986). NACCESS cal-

culates the area around the van der Waals volume of the side-chain that can be accessed

by a water molecule in the context of the rest of the protein. The van der Waals volume

for an exposed Glutamic acid is shown in Figure3.5.

Adding the two terms3.6and3.7the fitness for proteinp can be estimated as:

f itness(p) = interatomiccontacts(p)+solvation(p) (in kcal/mol) (3.8)

As an initial test to evaluate how efficient this fitness function is, it was applied to the

58 models in Table3.1 to identify the best alignment among the five. It correctly iden-

tified the models with lowest RMSDs in 51 cases. Further investigation was carried out

to weight the two terms, exploring linear combinations of the terms and their quadratic

forms, but eventually a 1:1 weighting seemed to be at least as good as any other lin-

ear combinations. More comprehensive tests were subsequently performed (see Section

3.6.2).

3.6 Benchmark of the method

To show how useful this genetic algorithm might be it was necessary to test it first using

an ideal fitness function. Only after this could our simple potential energy function be

tested on the same data set.
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3.6.1 Ideal fitness function: limits of the method

As explained in Section3.5.2, in our context RMSD is an ideal fitness function (see Equa-

tion 3.5). The next experiment was set up to assessin silico protein recombination when

modelling proteins for which experimentally determined structures are available from the

PDB. 163 SCOP domains (32α, 44β , 44 α/β and 45α + β folds) were modelled us-

ing their family relatives as templates with the program 3D-JIGSAW. This timeProfile1

alignments were used for these models, one per template. Using the protocol explained

in Section3.5.1models for the same query sequence were recombined. Results (Table

3.4) show that using several templates in this way permits building models that are on av-

erage not significantly more accurate than the optimal template (improvement of 0.46Å),

but never worse. However, in some cases the improvement is significant (up to 2.33Å),

mainly because of loop choices. For models with no templates over 40% of sequence

identity the average improvement becomes significant (0.88Å). From a population point

of view, models in the last generation show a consistent improvement (2.6Å better than

the initial population). A second important conclusion of this experiment was that muta-

tion does not contribute significantly to the gain in accuracy, as noticed in similar genetic

algorithm approaches (Xia & Levitt , 2002). Because we use RMSD as a fitness func-

tion, this experiment shows that our algorithm could not further improve regardless of the

fitness function applied.

3.6.2 Testing our simple fitness function

Now our energy function was used instead of RMSD. The observed differences in perfor-

mance can therefore be attributed to the fitness function. We show several sets of results

that illustrate the potential of the method.

Correction of alignment errors

First it was decided to check if the method is indeed able to recover alignment errors, as

could be expected, since recombination could combine well aligned fragments to built

an overall better fragment ensemble. For this, the next experiment was set up. Eight

SCOP domains were selected: twoα (d1a03a and d1a8h1; shortened to A1 and A2),

two β (d1qfja1 and d2phla1; B1 and B2), twoα/β (d1pmt2 and d1poxa2; C1 and C2)

and twoα + β (d1pne and d1a5r; D1 and D2) folds. Models were built for each of

them using their experimental PDB structures as templates, but shifting one sequence

patch of variable length one, two, three or four positions with respect to its correct place
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case ∆RMSDpopulation(Å) ∆RMSDbest template(Å) generations

Up to 100% identity (N=163)

Best -7.49 (-7.60) -2.33 (-1.77) 1 (3)

Mean -2.60 (-2.53) -0.46 (-0.39)* 8 (8)

Worst -0.16 (-0.23)* -0.04 (0)* 15 (14)

Up to 40% identity (N=50)

Best -7.49 (-7.60) -2.33 (-1.77) 2 (4)

Mean -2.77 (-2.67) -0.88 (-0.78) 10 (9)

Worst -0.48 (-0.3)* -0.05 (-0.01)* 17 (18)

Table 3.4: Benchmark ofin silico protein recombination using RMSD to the experimental structure as the

fitness function. Top: models using templates of any sequence identity. Bottom: only templates below 40%

sequence identity had been used. Values in brackets correspond to simulations using only recombination,

otherwise mutation has been also applied. The first column shows the final average population RMSD with

respect to the founder population average RMSD values. The second column shows the evolution of RMSD

with respect to the optimal template, had we initially identified it. Non-significant differences are marked

with *. The last column shows how many generations were needed to reach convergence. Significance here

refers to RMSD differences smaller than usually observed between proteins solved under different crystal

lattices or by NMR.

in the sequence alignment. Thus every initial modelling population was composed of

five partially wrong protein models and was fed into the recombination program. Since

the genetic algorithm is not deterministic, five replicates for each of the eight SCOP sets

were performed. Figure3.6shows that this algorithm is able to recombine models to yield

better-aligned models, suggesting that it is robust enough to overcome alignment errors

if partially correct alignments are present in the initial population. Again this reinforces

the view that using models constructed from different alignments should result in more

favourable protein conformations.

A more detailed analysis of this experiment, illustrating a typical protein recombi-

nation simulation, is shown in Figure3.7, taking d1pne(1PNE,(Cedergren-Zeppezauer

et al., 1994)) as an example. In this instance, after generating an initial population in

which every member had serious alignment errors, a recombination experiment span-

ning over 13 generations converged onto a final population in which members had perfect

alignments, with RMSD values to the experimental structure of 0.8Å (0.05Å for the back-

bone). Crossover points found in the final models are shown in the multiple structural

alignment of the initial models (A) and in a three-dimensional molecular representation

(B).
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Figure 3.6: Protein recombination is able to generate optimal alignments and more accurate models from

populations of models obtained from randomly shifted alignments. Eight populations of models (for se-

quences A1,A2,B1,B2,C1,C2,D1,D2) were created using randomly shifted alignments. Four different pop-

ulations were generated for each sequence, using shifts of one, two, three and four positions. Each pop-

ulation was independently recombined five times. Final population averages (marked as periods) for each

experiment are shown in the same column. Note that alignment shifts (on top) tend to disappear upon

recombination with respect to the best initial model (marked as horizontal bars). RMSD differences to

the known experimental structure (below) tend to diminish. Note also that some alignment errors cannot

be recovered, such those found in populations A1sh2 or A1sh3,if there are no correctly aligned regions

overlapping between parents.
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Figure 3.7: Protein recombination experiment in detail.A) Four shifted-alignment models (1S,2 S,3 S

and 4S) for cow profilin (d1pne(Cedergren-Zeppezaueret al., 1994)) were generated. TheirCα RMSD

to the correct conformation (ideal model) ranged from 2.3 to 9Å and their average alignment shift per

residue from 0.16 to 2.68. The top row shows the STICK-assigned secondary structure for the ideal model

(H for α-helix and E forβ -sheet). The bottom row (x) marks the most frequent crossover points when

these shifted models are recombined, recorded during the evolutionary process shown in C.B) shows the

crossover points mapped (in black) on the final recombinant model, using the program Molscript (Kraulis,

1991). C) In this graph the average shift/residue (continuous line) andCα RMSD (dotted line) of the

evolving population are plotted against the number of generations. After 13 generations, the simulation

converged. The final population has an averageCα RMSD of 0.8Å to the experimental d1pnestructure

(only 0.05Å to the backbone) and no alignment shifts.

Different templates and different alignments

The same previous eight SCOP domains (A1 to D2, see above) were used to set up a new

recombination experiment. To build the initial populations of models we used single-

template models built from alternative alignments (to the same template) simultaneously
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with models built from a variety of templates in their SCOP families. The number of

models used for these initial populations ranged from 10 to 102. In addition, to analyse

how different several recombination runs can be, each initial population was used to start

10 independent experiments. Results are shown in Figure3.8. The picture arising from

this experiment is that alignment shifts are minimised upon recombination and can go

beyond the best initial model in the population. At the same time, final population aver-

age RMSDs are comparable to the best initial model seeded. Furthermore these results

pointed out the importance of replicating simulations for the same population to fully ex-

ploit the capability of the method. Since this is a population-based method, a population

answer should be provided and this can be achieved by running independent simulations

on the same input. Analysis of these experiments showed that on average RMSD differ-

ences between independent runs tend to be not significant, so they could be considered as

ensembles of protein conformations, analogous to NMR structures.

Large-scale benchmark

To conclude the benchmark of the method, a large-scale protein recombination experi-

ment was made on a set of 130 SCOP domains (27α, 38β , 26α/β and 39α + β folds).

Domains were modelled using their family relatives as templates and only one sequence

alignment per template. Due to computing time limitations, only one independent run

was performed for each of the 130 populations. Despite this handicap, it turns out that

the algorithm produces final populations of models that are comparable to the best initial

model (see Table3.5and Figure3.9) and that are consistently better than the initial popu-

lation (around 1̊A). In 92% of the cases (89% for models built from templates 40% or less

identical in sequence) final population models are not significantly different to the best

initial model. However, as expected from the reference experiment, using RMSD as a

perfect fitness function, no improvement is seen beyond this limit. The good news is that

the algorithm converges onto protein conformations close to the optimal model, suggest-

ing that our method sorts templates better than sequence identity measures and that there

is no need to select templates for modelling. The bad news is that more favourable pro-

tein conformations, according to the fitness function, do not always correspond to lower

RMSD states (see Figure3.10B for an example) and that, on average, the algorithm is not

taking full advantage of the expected possibilities of combining different templates. To

some extent this was predictable, since only one alignment per template was used for this

experiment, making the method comparable to 3D-JIGSAW in that respect.
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Figure 3.8: Alternative alignments and different templates may improve the performance of protein re-

combination. For each of eight model sets, ten recombination replications were produced, with final popu-

lation averages shown in the same column. Note that alignment shifts (A) tend to diminish upon recombi-

nation with respect to the best initial model (marked with horizontal bars) if there is room for improvement.

On the other hand, RMSD changes (B) are not equally consistent.

Analysis of RMSD changes

After recombining 130 sets of single-template models, only 3 final populations have con-

formations significantly better than the optimal template model (over 0.6Åof RMSD dif-

ference). Inspection of these models and others with minor improvements (30 recombi-



RECOMBINATION OF PROTEIN MODELS 92

Figure 3.9: Performance of in silico protein recombination in a set of 130 unique experiments to model

SCOP domains. Each model comes from a single sequence-aligned template. (A) Average population

alignment shift measures are compared at the beginning (black solid line) and when the algorithm con-

verges (grey solid line). Final populations of models are significantly better than initial (see Table3.5) and

the degree of improvement is limited by the best initial model (black dashed line) had we known it before-

hand. (B) Average population RMSD to experimental structures for each SCOP domain is compared at the

beginning and at the end of each experiment. Final population RMSDs are often over the best initial model,

but differences are not significant in 120 out of 130 experiments (see Table3.5).

nation experiments) shows that the improvements come from choosing alternative surface

loop conformations or from small subdomain movements. Figure3.10(A) shows one ex-

ample in which the final population in the experiment achieved an RMSD value to the
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case ∆RMSDpop ∆RMSDbest templ ∆shi f tpop ∆shi f tbest templ

(Å) (Å) (shift/residue) (shift/residue) generations

Up to 100% identity (N=130)

Best -4.17 -0.88 -1.66 -0.18 11

Mean -1.06 0.4* -0.16 0.02 24

Worst 2.47 5.66 0.17 0.37 30

Up to 40% identity (N=44)

Best -4.13 -0.88 -1.41 -0.18 12

Mean -0.98 0.24* -0.2 0.05 25

Worst 0.67 2.37 0.17 0.44 30+

Table 3.5: Benchmark ofin silico protein recombination using our simple fitness function. Top: models

using templates of any sequence identity. Below: only templates below 40% sequence identity had been

used. The first column shows the final average population RMSD with respect to the founder populations

RMSD values. The second column shows the evolution of RMSD with respect to the optimal template, had

we identified it. Non-significant differences are marked with *. The third column shows the final average

alignment shift with respect to the initial population. The fourth column highlights the same value now

with respect to the best template. Finally, the last column shows the number of generations needed to reach

convergence. Overall, in 92% of the simulation experiments the final population has an average RMSD to

the experimental structure comparable to the model built from the best template, meaning that this method

consistently identifies the best templates. If only the 40% subset is considered, the figure drops to 89%.

known structure of the protein that is significantly better (0.89Å) than the model built us-

ing the best template. In this case the improvement comes from the relative orientation of

two subdomains from different templates that have been arranged together. Nevertheless,

it is clear that on average models in populations do not improve their RMSD beyond the

optimal template model. The value of this method is that it consistently converges around

the optimal template’s conformations, and these cannot be identified routinely.

Analysis of alignment accuracy

From these experiments it may be concluded that populations improve their average align-

ment shift (with respect to their structural alignment) through rounds of fitness selection

and recombination. On average this improvement is about 0.16 shifts/residue (see Ta-

ble 3.5), but the ceiling of this improvement is usually dictated by the optimal template

model. Figure3.11shows how observed improvements in population energies correlate

to average alignment shifts and RMSD changes through recombination experiments. A

linear correlation between energy improvement and alignment shift change is found (Fig-
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Figure 3.10: Limitations of the algorithm. Global RMSD improvements come usually from surface loop

movements (usually intrinsically flexible) or small subdomain movements, as can be seen (A) in the exper-

iment to model d1apr(mold acid protease 2APR (Sugunaet al., 1987)) from a population of 11 models

built from different templates from the same SCOP family. The final population model is depicted in white,

while the best initial model is shown in black (* points to the main differences observed comparing the two

models and ? shows a broken loop, a common side-effect of protein recombination). The worst RMSD

result obtained in our protein recombination benchmark is shown in B, where it was attempted to model

d1dt0a1 (superoxide dismutase N-terminal domain in 1DT0 (Bondet al., 2000)) from an initial population

of 8 models. The simulation yields a final population RMSD of 5.35Å while the optimal template model

(shown in black) is only 0.89̊A away from the known experimental structure. In this particular example the

long loop (*) is taken from a template (1MNG (Lah et al., 1995)) whose crystallographic contacts bent the

helical bundle.
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ure3.11A), but the interdependency between energy evolution and RMSD change (B) is

less clear, and only tentatively can be approximated by a logarithmic function.

Figure 3.11: Correlations between energy improvements in populations and alignment and RMSD im-

provements calculated with data from 130 recombination experiments. (A) A linear correlation is found for

the change in average alignment shift, suggesting that it could be predicted to some degree from the output

of a recombination experiment. (B) The correlation to RMSD is weaker and only tentatively is modelled

with a logarithmic function, suggesting that it would be of little value to predict RMSD improvements from

energy profiles. A similar correlation is found when a linear function is tried.

3.6.3 Incorporating PSI-BLAST alignments

To compare our results to a standard alignment program, such as PSI-BLAST, the same

previous set of 130 SCOP domains was re-investigated. Only templates found by PSI-

BLAST, less than 40% identical to the query sequence, were used. Alignments were
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taken directly from the program’s output and subsequent models built using 3D-JIGSAW.

These were added to models built using the same templates, but with our own alignments

that consider secondary-structure information. The aim of the experiment was to compare

the final population of recombined models to the PSI-BLAST-based model constructed

from the alignment with the beste-value. The first observation from this experiment is

that only 54 out of 130 domains can be modelled within these constraints, since tem-

plates for the remaining could not be found using default parameters. On this reduced

dataset, recombined populations of models tend to be, on average, 0.51Å closer to the

corresponding experimental molecular structure than the beste-value PSI-BLAST-based

model. More importantly, the corresponding difference in alignment shift was on aver-

age 0.42 shifts/residue better than the PSI-BLAST model. However, in three cases, the

recombination protocol did not improve beyond the PSI-BLAST alignment; indeed the

original PSI-BLAST aligned models had better agreement with the experiment in some

exposed loops. These results suggest that further improvements to the energy function

can be made. This benchmark also suggested that simply taking the beste-value, and

associated template, from a standard PSI-BLAST output, does not necessarily produce

the best model. In addition, within these 54 examples, models built from the beste-value

alignment were 0.81̊A worse than the best models built from the ensemble of templates

found by PSI-BLAST. In other words,e-values are not necessarily a good indication of

how good a model will be, as suggested in Figure3.1 for sequence identity. This obser-

vation also holds for alignment accuracy, since templates with loweste-values produce

models that are, on average, 0.58 shifts/residue displaced with respect to the best possible

model.

3.6.4 Contribution of the solvation term

To further investigate the fitness function when applied to recombination experiments, the

previously described 54 populations were reinvestigated to further assess the contribution

of the solvation term. This was done by recombining these populations with and without

this term in the energy function. The comparison of these simulations provides a clear

conclusion: inclusion of the solvation term yields better recombinant models in terms of

deviation to the experimental structures and alignments shift in 22 out of 54 domains;

the remainder are very similar. On average, selecting models without the solvation term

yields models that are 0.4Å worse than those selected including it. Alignments are further

displaced by an average of 0.05 shifts/residue.
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3.6.5 Discussion of results

The results presented here provide insights into two recurrent problems in protein com-

parative modelling: selecting templates and alignment errors. The novel methodology

proposed here deals with both simultaneously, and despite some deficiencies it is found to

be robust to some alignment errors. It also confidently classifies possible protein confor-

mations for a given sequence based on its homologous partners in the structural database,

the templates. These two features are crucial to automate the construction of comparative

models. Nevertheless, comparison of the fitness function with the ideal (Tables3.4 and

3.5) suggests that further improvements can be made to this function. Some limitations

and applications of this algorithm are now discussed.

Applications

As shown in the analysis of the results, the method presented here can improve the align-

ment accuracy of comparative models and avoids the step of selecting templates, since

models from all possible templates can be used. If these models are to be used as guides

for site-directed mutagenesis experiments, one of the most popular applications for CM

(Marti-Renomet al., 2000), alignment accuracy is essential to target the correct residues.

Comparative models have also been applied to fit protein structures into electron mi-

croscopy density maps of single molecules or supramolecular complexes (Zhanget al.,

2000; Wriggers & Chacon, 2001; Elcock, 2002), and alignment accuracy is therefore im-

portant to place the corresponding protein parts into the experimental data. A different

application of modelling, at the population level, would be to gain insights into fold flexi-

bility within a given molecule or even across families, because members of the same pop-

ulation of models can have geometrical differences that cannot be penalised at the level

of fitness. This could simply be pointing out the weakness of the fitness function used,

but recent work (Koehl & Levitt, 1999; Zagrovicet al., 2002a) using different functions

and different approaches, such as the Metropolis rule, propose that sequence or structure

ensembles represent more faithfully the nature of a given protein fold. The most impor-

tant feature of this methodology is its ability to recover alignment errors and to generate

different alignments from those contained in the initial population. This could be used to

combine comparative models obtained from different sources, templates and alignments

to get, not a consensus answer (something other programs already do (Lundstromet al.,

2001; Ginalskiet al., 2003)) but a model close to the optimal template that could correct

alignment errors found in the initial population.
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Limitations

The presented algorithm has several limitations, the most obvious being the fitness func-

tion. Improvements to it will be translated into improvements of the algorithm perfor-

mance, within the limits defined in our benchmark using RMSD as an ideal fitness func-

tion. This means that the algorithm can potentially take advantage of better fitness func-

tions found by the community in the future or those already described in the literature,(see

for exampleHolm & Sander(1992); Koehl & Levitt (1999); Janardhan & Vajda(1998);

Keasar & Levitt(2003)). In particular, it seems important to explicitly include terms ac-

counting for the formation of hydrogen bonds. However, better functions may require

more computing time, limiting their practical applicability. In addition, because the al-

gorithm creates new protein conformations every generation by ”cut and paste”, if finer

energy functions were used, it would be necessary to minimise protein conformation ener-

gies every generation, adding yet more computational overhead to the process. The fitness

function used for this work is fast to calculate but at the price of being less accurate. This

has the benefit that population members need not be minimised every generation. Despite

this, protein recombination experiments can still take several hours in a worst-case sce-

nario (see Section3.11). In a practical situation, models generated byin silico protein

recombination often need to be minimised, particularly to fix broken loops. In general,

the energy function used and the run-time checks (see Section3.5.1) are sufficient to pro-

duce models with minor stereochemical problems that can be fixed with a subsequent

full-atom minimisation algorithm. The second limitation of the method is the search for

meaningful alternative alignments to the modelling templates. We have shown the abil-

ity of the method to recover from some alignment errors and to improve the population

alignment accuracy, with the condition that partially correct alignments are present in the

initial population. If all the initial alignments in a particular region are wrong, the method

would not be able to provide an accurate conformation for that part of the protein. This

suggests that models used for recombination experiments should cover many different but

reasonable alignment possibilities. Unfortunately the total number of possible sequence

alignments is vast and no hint can be given about the minimal alignment set required to

solve the problem. Suboptimal alignment strategies, like the one used in our experiments

(Saqi & Sternberg, 1991; Saqiet al., 1992), and different alignment procedures could be

used, since it is accepted that different sequence alignment tools usually give different

answers to the same non-trivial alignment problem and often each of them would give

optimal alignments in particular cases but not in others, as mentioned in2.2.1. Finally,

the stochastic nature of the algorithm implies that slightly different answers for the same
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input can be obtained. This can be utilised to provide useful information concerning fold

flexibility, as discussed above, but would of course require additional computing time.

The role of mutation

One of the conclusions of this benchmark is the secondary role of our mutation opera-

tor, compared to recombination, in generating useful conformation variability. This in

theory undermines the capacity of the method to generate novel protein conformations,

substantially different to any of the templates used. Of course this is related to the way

the mutation mechanism is implemented, and because the current method is simply an

averaging procedure, with no attempt to correct generated distorted side-chains, we be-

lieve it is possible to increase the contribution of mutation. It would imply quality checks

after averaging or, as with SWISS-MODEL (Guexet al., 1999), averaging only the Cα

atoms and then reconstructing the rest of the residue. To test if variability generated by

other means could improve the performance of the method, a small recombination exper-

iment was carried out in which the original sets of initial models were used to generate

extra compatible protein conformations using the method CONCOORD (de Grootet al.,

1997). The results were not significantly different, so we concluded that mutation, in this

context and with this fitness function, is secondary to recombination. Similar observations

have been made in related contexts (Xia & Levitt , 2002).

Crossover and secondary structure elements

An important feature of the method is the choice of crossover points between models. In

this initial implementation, crossover is only permitted to occur out of regular secondary

structure elements, as defined by STICK, a program that assigns secondary structure states

based on vectors that represent the topology of the fold. The reason for this is that loops

seemed to be the natural place to cut and paste peptides. Furthermore, we prefer not to

recombine in helices or strands to conserve their native geometry and to avoid additional

efforts to reconstruct them. However, there is no reason to believe that genetic recombina-

tion, to which this algorithm is analogous to, occurs only outside of DNA regions coding

for regular secondary structure elements.

3.7 CASP5 benchmark

Around the time we were benchmarking these modelling procedures and analysing the

results, the prediction season of CASP5 started, towards the end of May 2002. A total of
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187 research groups from around the world and up to 72 web servers registered to submit

structural predictions for 67 proteins, shown in Table3.6. The broad goals of CASP

experiments, summarised in Section1.5, are to address the following points:

1 Are the models produced similar to the corresponding experimental structure?

2 Have similar structures that a model can be based on been identified?

3 Is the mapping of the target sequence onto the proposed structure (i.e. the align-

ment) correct?

4 Are the details of the models correct?

5 Has there been progress from the earlier CASPs?

6 What methods are most effective?

7 Where can future effort be most productively focused?

As in previous CASPs, independent assessors would evaluate the predictions, emphasis-

ing primarily on the effectiveness of different methods. The experiment concludes with

the CASP5 meeting to discuss progress and relative performances of each method. The

part of CASP that deals exclusively with automatic methods is called CAFASP (Critical

Assessment for Fully Automated Structure Prediction).

Table 3.6: List of targets included in CASP5, including the published experimental structures added to

the PDB as of May 2003. The reader can browse through the targets and the models submitted by the

participating groups at the CASP5 website (http://predictioncenter.llnl.gov/casp5).

Target-id Name residues Exp.Method Description

T0129 HI0817 182 X-ray H. influenzae

T0130 HI0073 114 X-ray H. influenzae

T0131 HI0857 100 X-ray H. influenzae

T0132 HI0827 154 X-ray H. influenzae

T0133 HIP1R 312 X-ray N-terminal domain, rat

T0134 AP3DELTA 251 X-ray Delta-adaptin appendage do-

main, human

T0135 BSPA 108 X-ray Boiling stable protein,

P.tremula

(continued on next page)
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Table 3.6:

(continued from previous page)
Target-id Name residues Exp.Method Description

T0136 TC12S 523 X-ray Transcarboxylase 12S sub-

unit, P.shermanii (PDB 1ON3

and 1ON9, (Hall et al., 2003))

T0137 FABP1 133 X-ray Fatty acid binding protein

FABP1, E.granulosus

T0138 KaiA135N 135 NMR N-terminal domain, S. elon-

gatus (PDB 1M2E and 1M2F,

(Williams et al., 2002))

T0139 DFF-C 83 NMR Caspase Associated DNase

domain (225-307), human

(PDB 1KOY (Fukushima

et al., 2002))

T0140 1B11 103 X-ray synthetic protein

T0141 AmpD 187 NMR C. freundii (PDB 1IYA

(Liepinshet al., 2003))

T0142 NITRO 282 X-ray Nitrophorin, C.lectularius

T0143 V8prot 216 X-ray V8 protease, S.aureus

T0144 CYP 172 X-ray Cyp protein, L.luteus

T0145 GLI 216 X-ray Gliotactin C-terminus por-

tion, D.melanogaster

T0146 ygfZ 325 X-ray E.coli

T0147 ycdX 245 X-ray E.coli (PDB 1M65 and 1M68

(Teplyakovet al., 2003))

T0148 HI1034 163 X-ray H.influenzae

T0149 yjiA 318 X-ray E.coli

T0150 L30E 102 X-ray Ribososmal protein L30E, T.

celer (PDB 1H7M (Chen

et al., 2003))

T0151 SSBP 164 X-ray Single-strand binding pro-

tein (SSB), M.tuberculosis

H37Rv

(continued on next page)
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Table 3.6:

(continued from previous page)
Target-id Name residues Exp.Method Description

T0152 Rv1347c 210 X-ray Hypothetical protein

Rv1347c, M.tuberculosis

H37Rv

T0153 DUT 154 X-ray Deoxyuridine 5’-

triphosphatenucleotidohydrolase

(dUTPase),M.tuberculosis

T0154 PANC 309 X-ray Pantothenate synthetase,

M.tuberculosis (PDB 1MOP

(Wang & Eisenberg, 2003))

T0155 FOLX 133 X-ray Probable dihydro-

neopterin aldolase

(DHNA),M.tuberculosis

T0156 MENG 157 X-ray S-adenosylmethionine:2-

demethylmenaquinone

methyltransferase, M. tuber-

culosis

T0157 yqgF 138 X-ray E.coli

T0158 AES 319 X-ray Acetyl esterase, E.coli

T0159 PROX 309 X-ray Glycine betaine-binding

periplasmic protein, E.coli

T0160 VAP-A 128 X-ray VAP-A protein, rat

T0161 HI1480 156 X-ray HI1480, H.influenzae

T0162 CAZ1 286 X-ray F-actin capping protein

alpha-1 subunit, chicken

(PDB 1IZN (Yamashitaet al.,

2003))

T0163 GLOX 369 X-ray Glycin oxidase, B.subtilis

T0164 C20 166 X-ray C20, chicken

T0165 CAH 318 X-ray Cephalosporin C deacetylase,

B. subtilis

(continued on next page)
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Table 3.6:

(continued from previous page)
Target-id Name residues Exp.Method Description

T0166 SLYA 150 X-ray Transcriptional regulator

SLYA, E. faecalis

T0167 yckF 185 X-ray Hypothetical Cytosolic Pro-

tein B.subtilis

T0168 GLS2 327 X-ray Glutaminase, B.subtili

T0169 yqjY 156 X-ray B.subtilis (PDB 1MK4

(Zhanget al., 2002))

T0170 HYPA 69 NMR FF domain of HYPA/FBP11,

human (PDB 1H40 (Allen

et al., 2002))

T0171 BIOH 256 X-ray Protein BioH, E.coli (PDB

1M33 (Sanishvili et al.,

2003))

T0172 MRAW 299 X-ray Conserved hypothetical pro-

tein, T.maritima (PDB 1M6Y

and 1N2X (Miller et al.,

2003))

T0173 Rv1170 303 X-ray Mycothiol deacetylase,

M.tuberculosis

T0174 XOl-1 417 X-ray Protein XOl-1, C. elegans

(PDB 1MG7 (Luz et al.,

2003))

T0175 yjhP 248 X-ray Hypothetical protein yjhP,

E.coli

T0176 yggU 100 NMR Hypothetical protein yggU,

E.coli (PDB 1N91 (Aramini

et al., 2003))

T0177 HP0162 240 X-ray Hypothetical protein

HP0162, H.pylori

T0178 DEOC 219 X-ray Deoxyribose-phosphate

aldolase, A.aeolicus

(continued on next page)
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Table 3.6:

(continued from previous page)
Target-id Name residues Exp.Method Description

T0179 ywhF 276 X-ray Spermidine synthase ho-

molog, B.subtilis

T0180 MTH467 53 NMR Hypothetical pro-

tein MTH467,

M.thermoautotrophicum

T0181 YHO7 111 NMR Hypothetical protein

YHR087w, S.cerevisiae

T0182 TM1478 250 X-ray T.maritima

T0183 TM1559 248 X-ray T.maritima

T0184 TM1102 240 X-ray T.maritima

T0185 TM0231 457 X-ray T.maritima

T0186 TM0814 364 X-ray T. maritima

T0187 TM1585 417 X-ray T. maritima

T0188 TM1816 124 X-ray T. maritima

T0189 TM0828 319 X-ray T. maritima

T0190 YEDX 114 X-ray Transthyretin-related protein,

E.coli

T0191 AROE 282 X-ray Shikimate 5-dehydrogenase,

M.jannaschii (PDB 1NVT

(Padyana & Burley, 2003))

T0192 SSAT 171 X-ray Spermidime/Spermine

Acetyltransferase (SSAT),

human

T0193 ATBP 211 X-ray AT-rich DNA binding protein

(ATBP), T.aquaticus

T0194 Y450 237 X-ray Conserved hypothetical pro-

tein, M.pneumoniae

T0195 YJG8 299 X-ray Hypothetical esterase in

SMC3-MRPL8 intergenic

region, S. cerevisiae
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To evaluate the results, organisers and assessors split the targets into structural do-

mains and classify each of them according to their prediction difficulty, using sequence

and structural similarity criteria. CM targets are considered the easiest, whilst NF are the

most difficult:

category full name methods needed to find optimal template(s)

CM Comparative Modelling BLAST and up to five iterations of PSI-BLAST

with e-value< 0.005.

CM/FR CM/Fold Recognition Transitive PSI-BLAST withe-value< 0.02, in

which hits found in initial searches are fed back

into PSI-BLAST to find remote templates.

FR(H) FR (Homology) Sequence similarity found when query and tem-

plates are structurally aligned.

FR(A) FR (Analogy) No sequence similarity found when query and

templates are structurally aligned.

NF New Fold no templates found in the PDB.

Table 3.7: Classification of CASP5 targets by expected prediction difficulty.

The two main numerical criteria used by the assessors to compare and evaluate pre-

dictions of tertiary structure are the following scores:

• GDT TS, the average of the maximum number of residues that can be superim-

posed between the experimental structure of the target and a predicted model within

1Å,2Å,4Å and 8Å distances in a sequence-dependent manner.

• AL 4, number of residues in a model for which the corresponding residue in the

experimental structure is within +/-4 residues of the correct one (shifted up to four

residues) and the distance in between is less than 4.0Å. This is a sequence indepen-

dent measure.

Both scores are percentages and can be calculated using the program LGA byZemla

(2003), member of the CASP organising team. These scores fulfil the need for a unique

and objective numerical analysis of the results by all predictors.

3.7.1 Our protocol for CASP5

As in previous CASP experiments, there were basically two categories of targets: those for

which one or more templates can be found and those for which no obvious templates can
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be assigned. We tried to model each of the 67 targets on the assumption that there was at

least one template within the PDB. Therefore the only differences between the CM and FR

targets would be the more or less sophisticated tools used to find and align templates. The

rest of the modelling procedure for these two categories would be essentially the same.

Indeed, the assessors for these categories in CASP4 pointed out that template selection

and sequence alignment errors remained as the main problems affecting the quality of

models (Tramontanoet al., 2001; Sippl et al., 2001). For these reasons, we decided to

use the same tools and strategies for all CASP5 targets. In our hands, FR and CM are the

same problem, only the sequence similarities involved are of different magnitude.

The underlying assumption we had was that a combination of alignment methods

should be better than any individual method and that there is currently no way to confi-

dently identify the best template and therefore several templates should be used and com-

bined. Our approach, as has been presented, tackles both problems simultaneously. The

idea is that different templates for a given target are just different possible structures for

the same sequence. All templates are assumed to be homologous proteins, synthesised

from homologous genes, that can undergo genetic recombination or mutation. Since a

model can be considered as an alignment in three dimensions, models for alternative

alignments to the same template can be used. This simple principle was implemented and

applied to all CASP5 targets. The protocol can also be followed in Figure3.12.

Initial population of models. Initially, the web server DomainFishing was used to de-

fine protein domains within each target sequence and to find suitable modelling templates.

Resulting alignments were inspected and corrected if suspected to be incorrect (a variety

of biochemical and subjective knowledge-based criteria were used here). When found,

different alignments to the same template were added to the pool. In several cases, such

as T0130, annotations from the templates or their corresponding PFAM families were

used to check the correctness of the alignment in active/binding sites. In cases where Do-

mainFishing returned no templates, alignments were generated using a pssm-pssm search

against a non-redundant PDB library (coded by Paul A.Bates). As in DomainFishing,

this program calculates up to seven different alignments for each library member. Models

from these alignments were built using 3D-JIGSAW, using the interactive mode to edit

the alignments.

To gain extra variability in sequence alignments, templates and alternate loop confor-

mations, models were also taken from different CAFASP servers that return full atomic

coordinates. These were: FAMS(Ogata & Umeyama, 2000), EsyPred3D(Lambertet al.,

2002), Arby(Fraunhofer-Institute), Alax , Robetta (Simonset al., 1997b) and Pmodeller
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Figure 3.12: Our modelling protocol during CASP5.

(Lundstromet al., 2001; Wallner & Elofsson, 2003). In cases where the fold of the target

was not clear, models built using the most popular templates from the most popular SCOP

superfamilies were preferred.

Models were inspected and missing parts, typically loops, added using in-house soft-

ware written by Paul.W.Fitzjohn before going to the next step. In essence, this software

exploresφ/ψ space to allow a peptide (the missing loop) to connect a gap in a protein

fold. Models were then energy-minimised in order to smooth theirφ/ψ geometry and to

permit unbiased energy calculations at later stages.
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Growing the population by recombination and mutation. The protein recombination

procedure explained previously was applied here with recombination rates of 0.95, since

we knew that out implementation of mutation was not helping much.

Selecting the best proportion. When a population reaches the upper limit (between 2

and 4 times its initial size, 30 to 200 models in our CASP5 simulations), members are

ranked according to their fitness. To assure that quality models are not lost prematurely,

the selection rate was kept at 25%, the value we had been testing in our internal bench-

marks.

Convergence and final refinements. When all members of the population have con-

verged to a similar energy, there is no room for further generation of variability and the

evolution process stops. In most cases this final population consists of several represen-

tatives of the same protein conformation with average backbone deviations in the order

of 0.1Å, but sometimes substantially different subpopulations can be obtained. One of

these representatives, usually the first or the most populated, was taken as the final model

and carefully inspected, using the program Quanta (Accelrys Inc.), to detect unfavourable

peptide conformations, check the Ramachandran plot and a final energy minimisation us-

ing the CHARMM22 force field, after adding covalent hydrogens and protons to acid and

basic groups, assuming neutral pH. No cofactors were considered. This procedure is able

to fix distorted side-chains generated by mutation, particularly twisted cyclic groups or

elongated bonds. At this point we had a CASP5 unrefined model. For targets T0134,

T0165, T0177 and T0185 a further refinement step was performed, consisting of running

an all-atom molecular dynamics simulation. This is explained in detail in Section3.8.

3.7.2 CASP5 results and analysis for FR/NF targets

All 67 CASP5 targets were modelled using the above protocol. This population ap-

proach was used as an attempt to optimise template-based models obtained from different

sources. The analysis of the results shows that, in general, recombined models are not

significantly different to the best initial model, if that could have been identified at the

time of submission. This is the same message we learnt from out internal benchmark.

Only in a handful of cases did recombination yield slightly better models. With a similar

frequency, the algorithm yields slightly worse models than the best initial, particularly

when all the initial models are poor. The performance of the method is similar across all

CASP5 targets, but here only remote homology targets, down to the New Fold (NF) cate-



RECOMBINATION OF PROTEIN MODELS 109

gory, are discussed, as alignment errors and incorrect selection of templates become more

frequent for these targets. Indeed the assessor for the FR category (Nick Grishin) invited

us to present our results for these (Contreras-Moreiraet al., 2003b). Table3.8shows our

analysis for the results of these 24 protein domains, after comparing our models with the

targets for which the experimental structure is available. As described in the previous

Section, a set of template-based models was constructed for each target to seed the initial

population for a recombination experiment. The final model submitted was selected from

those in the last generation of models, after convergence. This table shows how different

the final recombinant models (Rec) are with respect to the initial models, constructed us-

ing the servers stated on the top of each column. To compare models, the standard CASP

scores were used, AL4 and GDTTS.
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Table 3.8: Performance of protein recombination in the CM/FR, FR(Homology), FR(Analogy) and FR/NF

categories. The first column states the target name (w is shown on targets modelled using templates with

incorrect folds). The left side of the table shows AL4 scores for the initial models fed into the recom-

bination algorithm. These models were obtained from different web-servers (3D-JIGSAW, Pmodeller and

Others). Ranges show the best and the worst scored models, with the total number of models in square

brackets. The fifth column shows the AL4 score for the recombinant models. The right side of the table

shows the analysis of the same data, using GDTTS scores. See the main text for the definitions of these

scores. ”Others” are servers participating in CAFASP3, where * indicates servers Fams,Alax,Robetta, ?

Robetta, + Robetta,Arby, # Fams and $ Fams,Alax. Finally, ! indicates a FR method by secondary structure

pattern matching, developed by P.W.Fitzjohn in our lab.

AL 4 GDT TS

3D-Jigsaw Pmodeller Others Rec 3D-Jigsaw Pmodeller Others Rec

CM/FR

T0130 61-60[2] 63 43.2-40[2] 37.3

T0132 66.4-56.8[3] 84.9-56.8[2] 82.2 42.3-39.4[3] 60.4-44.3[2] 61.6

T01591 53.3-18.6[10] 26.9-13.2[3] 40.7 36.9-16.2[10] 17-12.6[3]* 25.4

T01592 53.5-37.3[10] 44.4-32.4[3] 52.8 34.3-23.4[10] 27.8-23.4[3]* 33.1

T01681 58.8-49.4[4] 65.9-43.5[10] 53.5 40.1-34.8[4] 42.8-30.4[10] 35.7

T01682 26.2-17.7[4] 31.2-16.3[10] 16.3 22.1-19.1[4] 24.2-18.4[10] 19.7

FR(H)

T01341 67.5[1] 72.2-32.5[7] 69.8 40.7[1] 43.8-20.4[7] 39.1

T01342 89.6[1] 87.7-70.7[7] 82.1 58.5[1] 66-42.7[7] 63.4

T0138 78.5-15.6[6] 83.7-60.7[10] 66 43.5-12.4[6] 58.3-47.9[10] 48.7

T0157 80.8-30.8[8] 41.7-10.8[4] 74.2 56.4-25[8] 56.4-22.9[4]? 52.5

T01741 15.2[2] 16.7 14.2[2] 14.5

T01742 23.9[2] 26.4 23.7[2] 23.7

FR(A)

T0135(w) 25.5[1] 17.4[1]!

T0147 22.6-14.5[5] 27.8-20.5[2] 43.6 32.9-23.9[5] 29.6-27.1[2]+ 27.7

T01481 5.6[1] 23.9-5.6[5] 64.8 27.5[1] 45.1-26.8[5] 45.8

T01482 13.2[1] 13.2-6.6[5] 27.5 24.7[1] 35.7-28[5] 29.7

T01872(w) 15-8.8[2] 17.1 11.8-10.6[2]# 11.9

T01911(w) 15.1[1] 49.6-12.2[8] 21.6-12.2[5] 15.8 14.9[1] 34.9-15.3[8] 18-14.9[5]# 16.4

T01912 80.4[1] 81.8-61.5[8] 83.9-60.1[5] 80.4 51.6[1] 56.3-40[8] 52.8-43.4[5]# 52.6

FR/NF

T0170 63.8-13[10] 47.8 49.6-31.9[10] 37.7

T01722 36.6-17.8[4] 26.7-14.8[11] 17.8 24.7-19.8[4] 20.5-17[11]$ 18.1

T0173 18.1-14.6[3] 19.9[1] 18.1 13-10.1[3] 15.1[1]# 13

T01863 36.1-30.6[3] 50-30.6[10] 44.4-33.3[5] 38.9 29.2-27.8[3] 36.8-30.6[10] 29.9-28.5[5]# 29.9

T01871 17.6-16[2] 18.2 17.5-16.6[2]# 18.2

Some particular examples for each category, as assigned by the assessors, are now

analysed in more detail.
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3.7.3 T0132 (HI0827,Haemophilus influenzae)

This CM/FR target was identified as a thioesterase by DomainFishing. Using profile-

profile searches (see Section3.7.1) the template 1BVQ, a CoA-thioesterase fromPseu-

domonas sp., was confidently found (with 16% of sequence identity). However, the align-

ment was not trivial, so three different alignments were used to build models with 3D-

JIGSAW and two more models were taken from Pmodeller, one of them using a different

template, 1C8U, another bacterial CoA-related enzyme. Recombination built a model

that incorporated fragments from both templates but eventually had a very similar score

to the best initial model, a Pmodeller model based on an alignment generated by IN-

BGU(Fischer, 2000). We now analyse the major difficulties of the model, the phasing of

strands 2 and 5 of the coreβ -sheet. For strand 2, our initial set of five alignments con-

tained only segments shifted 1 or 2 positions with respect to the correct alignment. The

resulting recombinant alignment is shifted 1 position at this point. However, for strand 5

there were two initial correct alignments (the remaining alignments were shifted by 1 and

2 positions) and they were incorporated into the final recombinant model. These results

show how important it is to properly sample segments of ambiguous alignment, as the

algorithm cannot generate alignments omitted from the initial population. Themsuper

structural alignment of the five initial models, the recombinant models and the experi-

mental structure of T0132 is shown in Table3.9.

3.7.4 T0157 (yqgF,Escherichia coli)

This target was classified as FR(Homology) by the CASP5 assessors and was related to

DNA binding proteins according to the homologous sequences found by PSI-BLAST in

the NCBI nr database. We could not find any confident template(s), so we took models

from the CAFASP3 results page. In particular, models from Robetta and Pmodeller were

selected as they used the most popular templates (1KCF and 1HJR,E.coli and yeast en-

donucleases, 17% sequence identity). Different alignments were found for each of them

and a recombination experiment was set to select the best. The recombinant model is

comparable, though slightly worse than, the best initial one (based on an alignment gen-

erated by FUGUE (Shi et al., 2001) using 1HJR), but incorporating two different loops

and a differently phasedα-helix. The main difficulty of the target, anα-helix with a

different angle to equivalent helices on the templates, was not resolved. As of June 2003,

this structure has not as yet been released.
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...........str1.............................................
SS CCCCCCCCCCEEEEEEECCHHHCCCCCCCCHHHHHHHHHHHHHHHH-------H----HH
real T0132 TDKNGRQSKGVLLLRTLAMPSDTNANGDIFGGWIMSQMDMGGAILA-------K----EI
Rec -------KGVLL-LRTLAMPSDTNANGDIFGGWIMSQMDMGGAILA------K---EI-A
1bvq0 -------KGVLL-LRTLAMPSDTNANGDIFGGWIMSQMDMGG---AI-----LA--KEIA
1bvq1 -------KGVLL-LRTLAMPSDTNANGDIFGGWIMSQMDMGGAILA------K---EI-A
1bvq2 -------KGVLL-LRTLAMPSDTNANGDIFGGWIMSQMDMGGAI-L------A---KEIA
Pmod0 -------KGVLL-LRTLAMPSDTNANGDIFGGWIMSQMDMGGAILA------K---EI-A
Pmod4 -------ANFTD-KNGRQSKGVLLLRTLAMPSDTNANGDIFGGWIMSQMDMGGAILAKEI
Rec shift -------11111-000000000000000000000000000000000------1---22-3

......str2...................str3..........str4.............
SS HCCC-EEEEEECCCCCCCC-C-CCCCEEEEEEEEEEECCCEEEEEEEEEEE-CC-CCCC-
real T0132 AHGR-VVTVAVESMNFIKP-I-SVGDVVCCYGQCLKVGRSSIKIKVEVWVK-KV-ASEP-
Rec H-GRVVTVAVES-MNFIKP-ISV-GDVVCCYGQCLKVGRSSIKIKVEVWVK----KVASE
1bvq0 HGRVVTVAV-ES-MNFIKPISVG-DVVCCYGQCLKVGRSSIKIKVEVWVKK----VA---
1bvq1 HGRVVTVAV-ES-MNFIKPISVG-DVVCCYGQCLKVGRSSIKIKVEVWVKK----VA---
1bvq2 HGRVVTVAV-ES-MNFIKPISVG-DVVCCYGQCLKVGRSSIKIKVEVWVKK--V---A--
Pmod0 H-GRVVTVAVES-MNFIKP-ISV-GDVVCCYGQCLKVGRSSIKIKVEVWVKKVASEPI--
Pmod4 AHGRVVTVAVES-MNFIKP-ISV-GDVVCCYGQCLKVGRSSIKIKVEVWVK----KVASE
Rec shift 1-0011111111-000000-011-000000000000000000000000000----33222

.......str5......................................
SS C-CCEEEEEEEEEE-EEECCCC---CCCCC-CCCCCCHHHHHHHHHHHC
real T0132 I-GERYCVTDAVFT-FVAVDNN---GRSRT-IPRENNQELEKALALISE
Rec PIGERYCVTDAVFT-FVAVDNNGRSRTIPR-ENN-QE--LEKALALI--
1bvq0 S-EPIGERYCVTDAVFTFVAVD-NNGRSR--------------------
1bvq1 SEPIGERYCVTDAV-FTFVAVDNNGRSRT--------------------
1bvq2 SEPIGERYCVTDAV-FTFVAVD-NNGRSR--------------------
Pmod0 --GERYCVTDAVFT-FVAVDN-NGRSRTIPRENN-QE--LEKA------
Pmod4 PIGERYCVTDAVFT-FVAVDNNGRSRTIPR-ENN-QE--LEKA------
Rec shift 21000000000000-000000033333333-333-22--00000000--

Table 3.9: Structural alignment of models for T0132. Three-state DSSP-assigned secondary structure is

shown on top, then the experimental structure, the recombinant model, three 3D-JIGSAW 1BVQ models

and two Pmodeller models.β -strands are numbered on the top row. On the bottom row of each block the

alignment shift per residue of the recombinant model is shown, where 0 means a correctly aligned residue,

1 a one residue shift and so on. Note that all the alignments for strand 2 are shifted 1 or 2 positions; for

strand 5 the right alignment was correctly chosen among the three different possibilities. The 3D structure

cannot be shown since it has not been published yet, as of June 2003.

3.7.5 T0147 (ycdX,Escherichia coli)

This FR(Analogy) target was identified as a PHP (polymerase and histidinol phosphatase)

domain by DomainFishing. This superfamily includes several types of DNA polymerases,

histidinol phosphatases, and a number of uncharacterised protein families. These pro-

teins have four conserved sequence motifs that contain invariant Histidine and Aspartate

residues implicated in metal ion coordination (Teplyakovet al., 2003). No confident

template could be found using our own set of tools, so once again models for the most

popular templates found by the CAFASP servers were downloaded. All these templates

(1DHP,1H5Y,1QO2,1THF,1NAL) were TIM barrels, with 8β -strands, whilst the target

sequence had only 7β -strands predicted. No conclusive functional hint was found to

help in selecting templates, so a set of 7 models from Pmodeller, Robetta and Arby was



RECOMBINATION OF PROTEIN MODELS 113

recombined using the genetic algorithm. The final recombinant model selected by our

fitness function has a poor GDTTS score, as also do the initial models. But as shown in

Table3.8, the AL 4 score is considerably better than any of these 7 models. This example

is shown in Figure3.13, and is a good illustration of how the protein recombination algo-

rithm works. In this case the recombinant model includes two large fragments, from two

models built from different templates, obtaining a final composite model that can be better

equivalenced to the experimental (in AL4 terms). The algorithm took the better sections

from each of the two models to build an improved, hybrid, model. Figure3.13B shows

the set of possible crossover points between these two initial models (marked as *). This

limited distribution of points could indicate an important limitation of this technique: use-

ful crossovers between models are only possible if they can be reasonably superimposed

in space keeping together fragments with the same sequence.

3.7.6 T0170 (FF domain of HYPA/FBP11, human)

The FF domain is a 60 amino acid residue phosphopeptide-binding motif. Confident tem-

plate(s) could not be found using our standard sequence similarity tools (this was indeed

a FR/NF target, now PDB structure 1H40 (Allen et al., 2002)). Thus we decided to take

all ten models provided by Pmodeller and recombine them. Post-CASP analysis shows

that the best initial model, based on the homeodomain 1LFB and aligned by 3D-PSSM

(Kelley et al., 2000), is much better than the final recombinant model, suggesting that

the algorithm tested may not perform very well with small helical proteins. However,

repeating the recombination with the post-CASP version ofinsilicoPR, which calculates

energies/residue, allowing comparison of proteins of different length, provides a recom-

binant model scoring 58 AL4 and 46.7 GDTTS, comparable to the best initial model.

3.7.7 CASP5 overview and analysis for CM targets

CM targets were considered by the assessors the easiest in the experiment, since find-

ing templates for them was trivial. Nevertheless, only five CASP5 targets had more than

40% sequence identity to the optimal templates available at that time in the PDB. In strict

terms, these are not easy comparative models (see Figure1.9), although their alignments

are expected to be easier than those in the FR categories. We were also interested in com-

paring the ability of the algorithm to produce recombinant models for CM targets, indeed

this was the initial motivation for this work. Despite the simplicity of the potential energy

function, in most cases, the algorithm presented here selected the best possible alignments

and templates from the initial available ensemble. In some cases, our recombinant models
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Figure 3.13: (A) Cartoon showing the superposition of the experimental structure for the first 190 residues

of T0147 (white) and the recombinant model submitted by our group (N-terminus in blue, C-terminus in

red). (B) Corresponding structural alignment of the experimental structure of T0147, the recombinant model

and two template-based models generated by Robetta (rob1THF) and Pmodeller (pmd1NAL). The N-

terminus of the recombinant model was taken from pmd1NAL, based on that PDB template and highlighted

in blue, whilst the C-terminus is derived from rob1THF, in red. In terms of AL4 score, the recombinant

model is significantly better than both pmd1NAL and rob1THF. In terms of GDTTS, the recombinant

model is comparable to them (see text for scores definitions). Asterisks (*) mark possible crossover points

between the two initial models after a sequence-based superposition, all within loop regions. The PDB code

for the experimental structure is 1M65 (Teplyakovet al., 2003). Three Histidine residues in the recombinant

model align to the equivalent Histidines in the experimental structure, the other five are misaligned.

were significantly worse than those constructed by the best predictors. Analysis of some

of these results (targets T0137,T0153,T0177,T0178,T0182 and T0192) shows that the

quality of the initial models used in the recombination experiments to be the main reason.

Particularly, we believe that loop conformations where not successfully sampled for each
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initial model. We also noticed that recombination can sometimes improve alignments

but at the cost of making GDTTS scores worse, possibly due to accumulation of errors

during the evolutionary procedure. Overall, we have no reason to believe that this recom-

bination procedure works better for FR than for CM targets, although it is expected that

alignment errors would be more common in the former. Indeed, an automated ranking per

category produced by Michael Levitt (Stanford University), based on the official GDTTS

scores placed our procedure in positions 19 and 20 for both categories, suggesting that the

relative performances are similar.

3.8 Molecular dynamics simulations on four CASP5 tar-

gets

As mentioned in Section3.7.1, where we explained our protocol for CASP5, molecular

dynamics simulations were done, to assess to what extent they could improve some of

our CASP5 predictions, inspired by the work ofLeeet al. (2001). This part of the work

was done in close collaboration with Graham R.Smith, who shared knowledge, tricks and

programming code with me. Because of the strict time limitations during CASP and our

limited computing resources at the time, only four cases were refined: T0134, T0165,

T0177 and T0185, shown in Table3.10.

3.8.1 Protocol

We used version 3.1.4 of the software package Gromacs (Lindahl et al., 2001) and the

OPLS-AA force field (Dammet al., 1997), with its collection of parameters and potential

functions. As depicted in Figure3.14, the input for the procedure is a PDB file, in our case

a recombinant model obtained as explained in the previous Chapter. The first step consists

of creating a GROMACS topology for all the atoms, including hydrogens, in the PDB-

formatted molecule, which describes all the atomic interactions. Next, a cuboid-shaped

simulation box needs to be enlarged to accommodate the solvent molecules to solvate our

model, using the programeditconf. The size of the box is increased at least 10Å beyond

the longest dimension of the protein. This works well when a periodic boundary is to

be used. Then, the box is filled with water molecules, to get a concentration of about

55.5M. In the next step,Na+ and Cl− ions are added to at least a 0.1M solution, until

the total charge is zero. Now the neutralised system is minimised using a steepest descent

algorithm, and two equilibration rounds, one for hydrogen atoms and the other for all.
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target comment run-time

T0134 (FR(H) target) is a delta-adaptin appendage domain, part

of a complex (not clathrin-associated) related to lysosome

trafficking. It was selected because it has two clear struc-

tural subdomains and their relative orientation could change

respect to the templates used to model it (1QTS, Ap-2

Clathrin Adaptorα-appendage and 1E42,β -adaptin ap-

pendage from clathrin adaptor Ap2).

0.58ns

T0165 cephalosporin C deacetylase (PDB 1L7A) for which sev-

eral templates in the PDB were found, all of them related

to antibiotic biosynthesis. This was considered a CM tar-

get, with sequence identities to relative to the templates of

around 15%. It was selected for MD analysis for its long

loops and to check the packing of a set ofα-helices.

0.5ns

T0177 another CM target, a hypothetical protein HP0162 from

H.pylori, now PDB 1MW7. It was modelled using two bac-

terial templates (1LFP and 1KON) about 30% identical in

sequence. The reason to run molecular dynamics on it was

again the subdomain orientation difficulty.

0.74ns

T0185 a CM target fromT.maritima, eventually annotated as UDP-

N-Acetylmuramate-Alanine Ligase (PDB 1J6U), was again

chosen because of its complicated arrangement of subdo-

mains. It was modelled using templates of around 25%

sequence identity, proteins involved in the biosynthesis of

peptidoglycans, therefore, functionally related.

0.5ns

Table 3.10: CASP5 targets selected for molecular dynamics simulations.

The purpose of these is, in theory, to enable the system to reach equilibrium when the

subsequent molecular dynamics simulation is performed (Leach, 2001). After all these

steps have been accomplished, the molecular dynamics simulations are triggered taking

a pair of nodes of a Linux PC farm (866MHz). In all four cases, the length of the step

was 0.002ps. The total time simulated is shown on Table3.10, taking about two weeks.

Post-analysis of these simulations consisted of clustering snapshots of the trajectory (one

step every four) in terms of backbone RMSD, using the GROMACS toolstrjconv and

g cluster. One conformation from the most populated cluster was then selected and min-
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imised, using CHARMM22, and submitted to CASP5 as our refined model.

Figure 3.14: Flowchart of GROMACS (taken from http://www.gromacs.org/documentation).

3.8.2 Analysis of results

In the next Sections we compare the MD-refined models submitted to CASP5 to the unre-

fined models aiming to dissect the effect, negative or positive, that these simulations had

on our performance.

T0134 FR(H)

This protein was divided into two subdomains by the CASP5 assessors, T01341 and

T01342, to simplify evaluation. For T01341 clearly MD did not improve the model.

Upon refinement, GDTTS moved from 38.78 to 34.84, while AL4 also deteriorated,
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from 74.02 to 59.84. In the case of T01342, 0.58ns of MD changed the protein consid-

erably, diminishing the GDTTS from score from 63.44 to 46.22 and AL4 from 82.08 to

65.09. So it can be said that MD and subsequent CHARMM22 energy optimisation had a

negative impact on the accuracy of our predictions.

T0165, T0177 and T0185 (CM targets)

For these CM targets, Molecular Dynamics simulations also have negative effects over

the quality of our models, with final GDTTS and AL4 values very close, but generally

worse, than the unrefined model, listed in Table3.11.

target GDT TSunre f ined GDT TSre f ined AL 4unre f ined AL 4re f ined

T0165 49.84 42.53 67.92 58.49

T01771 92.98 90.35 100.00 100.00

T01772 86.36 84.37 100.00 97.73

T01851 63.12 56.43 91.09 87.13

T01852 65.73 66.62 86.80 85.28

T01853 57.30 52.88 76.92 69.23

Table 3.11: Relative performance of our MD simulations on three CM CASP5 targets as published by the

CASP5 assessment. Overall, the use of MD during refinement made a negative impact on GDTTS and

AL 4 scores.

Overall comment on the molecular dynamics refinements

The exact reason for MD not improving the models is not clear, but the fact that energy

functions are not perfect is well documented (Leeet al., 2001). Moreover it is not clear

which conformations to take after clustering the trajectories as they all seem to have sim-

ilar energies. Since we only submitted one conformation per each (CASP5 only scored

one model per group) our choice of the best model from the ensemble was subjective. If

CASP organisers were able to somehow score an ensemble of models, MD might be more

objectively analysed in future experiments.

3.9 Conclusions

The genetic algorithm tested in CASP5 tends to produce recombinant models that are

comparable to the best initial model, had we identified it, as we also observed in our
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in-house benchmark. In addition, this procedure performed well (our group was ranked

among the world top 20) in both comparative modelling and fold recognition targets.

These results suggests that our simple fitness function correctly identifies good models,

making it a good candidate to filter and rank models from automatic servers as well as

models built in-house, or indeed a combination of both. In addition, the method has been

shown to be able to improve alignments by recombining well aligned regions from indi-

vidual models. A related methodology presented in CASP5 byFischer(2003) also obtains

good results by executing ”cut and paste” operations over protein models, suggesting that

this principle is useful, regardless of the implementation. Unfortunately, the quality of the

models used to seed the first generation seems to be the upper limit for the quality of the

final model, showing that the current implementation of the algorithm is not adding much

beyond this baseline. Finally, because good global superpositions are required for useful

crossover, the current implementation ofin silico protein recombination cannot recom-

bine efficiently proteins that are totally different or have different domain orientations.

This suggests that local superpositions may be required.

3.10 Possible developments of the recombination meth-

ods

To perhaps improve the performance of these recombinant methods several changes or

additions to the current algorithms could be done. They are listed here:

• After a crossover event two recombinant proteins can be generated, although at the

moment only one of them is being carried over. This could be easily modified in

the current code.

• As mentioned earlier, local superimposition of partners in the population could help

to generate useful variants, particularly when different folds are being fed into the

founder population or if multidomain proteins are used.

• Different mechanisms for generation of structural mutants should be tried since

the one tested here is too coarse. Methods such asφ/ψ random exploration of

hinge regions between secondary structure elements, to generate different packing

angles between them, are envisaged. Predicted secondary structure could also guide

the building of mutant conformations. Unfortunately, the generation of genuine

folding variability will probably require finer energy functions, which leads to the

next point.
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• A recent paper byKeasar & Levitt(2003) suggests that explicit physical and knowledge-

based hydrogen bonding terms in potential functions are very important to help in

distinguishing global and local minima in energy landscapes. These terms could be

added to our fitness function.

• Non-energetic constraints, used in the theab initiofield for the simulation of folding

could be added. In particular, clustering of conformations to select the most popu-

lated and contact order (average sequence separation between contacting residues)

could be used to drive the artificial evolution process on a set of models (Simons

et al., 1997b, 1999).

• Inspired by recent work (Zagrovicet al., 2002a,b), conformations close to the av-

erage of the population could be calculated by a residue distance matrix, to give

extra fitness. In this work they actually calculate atomic distance constraints (cal-

culated by molecular dynamics simulations) and match them to the original nuclear

dipoles couplings (Overhauser effect) found in NMR experiments. This could also

be attempted here.

• An apparently obvious way to improve the performance of the method would be to

energy-minimise protein geometries after recombination events, to relax possible

steric clashes added that could marginalise otherwise good models. This has now

been partially tested, for a slightly different purpose (see Chapter4).

• A different interesting approach would be to add functional restraints to the fitness

function, if the protein that is being evolved is known to bind particular substrates or

partners in well defined ways. The idea could even be used to evolve novel proteins,

perhaps evolving their sequence as well, to do pre-designed tasks. Preliminary work

on this direction has been recently published byPetersen & Taylor(2003), in which

they evolve zinc-binding proteins from scratch.

• An interesting question that remains to be answered in this work is how much each

term in the fitness used used, for instance the one presented here, account for the

change in alignment shift and RMSD during protein recombination simulations.

3.11 Materials and Methods

Protein test sets from SCOP For every experiment in this paper, protein families from

SCOP 1.55 were randomly selected from the 4 major classes (337α, 276β , 374α/β and
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391α + β families). Only a non-redundant fraction (90% sequence identity cut-off) of

protein domains in each family, according to the ASTRAL database (Brenneret al., 2000),

was considered. To benchmarkin silico protein recombination using the simple fitness

function, the following SCOP domains were selected as query proteins to be modelled us-

ing proteins in the same family as templates (27α,38β ,26α/β and 39α +β , the number

of templates used in each case is indicated in brackets):d1pbk (4), d1pama2(7), d1pne(6),

d1poxa2(3), d2phia(16), d1pina2(4), d1pvxa(6), d1pvaa(5), d1psra(6), d1ppn(13), d1a75a(5),

d1a5da2(9), d1a25a(5), d1a33(6), d1a03a(6), d1a0aa(4), d1a0ca(3), d1a1s1(4), d1a81a1(15),

d1ad3a(2), d1adwa(9), d1ae7(16), d11bga(8), d2abl2(14), d2act(13), d1acz(7), d1qaua(6),

d2aaib2(8), d2aaib1(7), d1an82(6), d1an4a(4), d1qnna2(10), d1qnga(8), d1qo8a3(3), d1aoza3(2),

d1aoa2(3), d1aoga1(7), d1alo3(5), d1allb(11), d1ala(9), d1qlca(6), d1qk1a1(4), d1qkka(9),

d1qh7a(6), d1aisa2(7), d1aisa1(5), d1ain(9), d1aw0(5), d1aw1a(8), d1awpa(3), d1awca(4), d1qpca(5),

d2apr(11), d1qqya(8), d1qqka(5), d2ay1a(6), d1ayaa(16), d1b26a2(2), d1b2pa(5), d1b06a2(10),

d1b1xa1(8), d1b8za(3), d1bg3a3(3), d1bg01(5), d1be9a(4), d2bb21(9), d1bb9(15), d1rbla2(5),

d1rblm(5), d1bc4(9), d1blxb(4), d1bla(5), d1bjwa(6), d1bkja(3), d1bkb2(2), d1bh6a(6), d1bhda(3),

d1bwva2(5), d1bwya(13), d8ruci(5), d1burs(5), d2rspa(4), d1rp12(5), d1bzsa(8), d1bxta2(6),

d1bxsa(2), d1c4zd(4), d1c1da1(2), d1c9ha(4), d1cf5a(6), d1ce7a(6), d1scha(4), d1clh(8), d1ck7a2(8),

d1sw6a(4), d2ctha(6), d1ste1(3), d1crka1(5), d1srra(9), d1crb(13), d1cs8a(14), d1csee(6), d1cpcb(12),

d1cpn(2), d1cpt(3), d1cyda(3), d1d6aa(7), d1d3ca2(7), d8dfr(3), d1teha1(6), d1tcda(8), d1dn2a2(14),

d1tnra(3), d1dot1(7), d1dlpa2(6), d1dmxa(3), d1dt0a1(8), d1duvg2(4), d1duxc(5), d2trxa(7),

d1dssg2(5), d1dsya(5), d1tx4b(11), d1e3pa2(2), d1e3ia1(6), d1e1oa1(2), d1u9aa(4), d1ef5a(3),

d1egza(4).

For the detailed analysis presented only eight SCOP families were considered, two

from each class. Each contained several templates with a variable degree of sequence

identity to the query. They were: d1a03a (rabbit calcyclin, 1A03), d1a8h1 (Thermus ther-

mophilusmethyonil-tRNA synthetase, 1A8H), d1qfja1 (Escherichia coliflavin oxidore-

ductase, 1QFJ), d2phla1 (Phaseolus vulgarisseed storage protein, 2PHL), d1pmt2 (Pro-

teus mirabilisglutathione transferase, 1PMT), d1poxa2 (Lactobacillus plantarumpyru-

vate oxidase, 1POX), d1pne(bovine profilin, 1PNE) and d1a5r(human small ubiquitin-

related protein SUMO-1, 1A5R).

Single vs. Multiple-template modelling 271 families from SCOP were randomly se-

lected. A draw was made to select one protein domain (query) in each family to be mod-

elled using the other proteins, in the same family, as templates. Templates in each family

were ranked on sequence identity to the query. Only the first was used for single-template

models and the first five for multiple template models. To bypass alignment errors in this
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experiment, the query sequence was aligned to the best template using the known molec-

ular structure (taken from the PDB). The query and the best template were structurally

aligned and superimposed in space usingmsuper. In our implementation, two given Cβ

are considered to be equivalent if their distance is less than 3Å. When more than one

template was used, a multiple structural alignment was built and only the leader sequence

was then aligned to the query. The program 3D-JIGSAW builds multiple-template mod-

els by a combination of mean-field selection of superimposed fragments and side-chain

optimisation (Bates & Sternberg, 1999).

Optimal and suboptimal sequence alignments When query and template sequences

needed to be aligned, we usedProfile1, using pssms computed after 5 iterations of PSI-

BLAST against the nr database (http://www.ncbi.nlm.nih.gov) with default parameters.

After computing the optimal alignment, the pssm is used to calculate the average log-odd

score (or bit-score) per residue. Alignments were only considered for the experiments if

their bit-score was over 2.0. To generate suboptimal alignments, the guidelines explained

in detail in previous papers (Saqi & Sternberg, 1991; Saqiet al., 1992) were followed to

implement an iterative dynamic programming function that discovers non-trivial subop-

timal alignments by penalising positions aligned in previous iterations. After computing

one alignment trace, aligned residues are marked to be penalised in the next iteration. The

penalty chosen for next iterations was -0.1.

Atomic deviation measures For the experiments presented in Sections3.1,3.2,3.3 re-

ported RMSD values were obtained after superimposing pairs of models with the program

SSAP. These measures correspond to average deviations between all pairs of equivalent

Cα. For the recombination experiments, the RMSD calculations are now based on Cβ

and are calculated as part ofmsuper. Both measures are based on all the equivalent pairs

of residues obtained after aligning two sequences, including loops.

Computing time A recombination experiment can take from 5 minutes to several hours

(running serial C++ code on a 2.4GHz Pentium IV desktop PC under Linux) depending

on the size of the sequence to model and the population. Thus it is usually more expensive

than building models using traditional methodologies. The most time-consuming step of

the algorithm is growing each population, but this could be done in parallel if a farm of

computers is available by performing one reproduction event per node.
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Alignment shift calculation To calculate the quality of the alignments in the pro-

tein recombination experiment, the resulting models in each population were structurally

aligned to their corresponding experimental structures, as taken from the PDB database.

Taking these alignments as references, the average number of shifts per aligned residue

is computed. As models and real structures have identical sequences this computation is

trivial. An average shift of 0 means that the real structure and the model can be optimally

superimposed using their corresponding sequence alignment. A value of 1 would mean

that every residue is displaced, on average, one residue.

Generation of models from shifted alignments The sequence for each of the eight

query SCOP domains (described above) was used as input for the interactive form of

the web server 3D-JIGSAW (see http://www.bmm.icnet.uk/servers/3djigsaw) and 5 align-

ments to the top template (100% identical in sequence) were shifted 1,2,3 or 4 positions

to either side of a randomly selected residue before building the models. The resulting

complete models were used in the recombination experiment.

Building models from PSI-BLAST alignments PSI-BLAST version 2.2.5 was used

with default parameters. The database used was dPFAMPDB, the same one used by

our 3D-JIGSAW server. Five iterations were used and the output was parsed to extract

the alignments to a maximum of 8 templates. Models were built from these alignments

using 3D-JIGSAW. The averagee-value of the alignments used was 8e−3. PSI-BLAST

models were on average 1.7 residues shorter than corresponding models aligned by our

procedure.
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Chapter 4

Exonic structure and recombination of

proteins domains

As introduced in Section1.1.5, introns are fragments of non-coding DNA intercalating

gene-coding regions (exons). In general, the proportion of non-coding regions in eu-

karyotic genes, including introns, is higher than that of coding regions. Since genetic

recombination normally relies on a random crossover point being drawn along a stretch

of two homologous DNA strands pairing together, the more non-coding sequences exist-

ing in a gene, the less chances are for this crossover point to be inside a coding region.

Since eukaryotic genes may have large introns, it can be postulated that they have a role

in mediating genetic recombination.

Introns can be classified according to different criteria, including splicing mechanism,

sequence signals or even their late/early origin. However, from a phylogenetic point of

view, assuming that intron gain or removal are rare events, introns are considered to be

homologous regardless of their type, sequence or length, as long as they occupy homol-

ogous positions in the DNA (Patthy, 1999). They will be considered in this way in this

chapter, in the context of protein structure. There is one informative attribute of introns

that can be easily calculated from the genomic data, the phase. The phase relates the po-

sition of consecutive introns to the final spliced reading frame. Since RNA is translated

in triplets (codons), the phase of introns can only be 0, 1 or 2. Phases are important since

changing them may radically change how a mRNA moleculae is read and translated.

Intron gain is frequently associated with insertion of mobile genetic elements whilst

intron loss or shortening is often explained by a model in which homologous recombi-

nation between the genomic copy of a gene and an intron-less DNA produced by reverse

transcription of the corresponding mRNA eliminates the genomic intron (Patthy, 1999;
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Mourier & Jeffares, 2003). Intron sliding can also occur, although it has been reported

as an infrequent event (Stoltzfuset al., 1997). Regardless of their origin, introns must be

spliced from their mRNAs for proteins to be translated. Intron splicing relies on very short

RNA motifs marking the boundaries; changes in these positions, which are the only ones

conserved along introns, will directly affect the outcome of the splicing process (Padgett

et al., 1986; Alberts et al., 1994; Clark & Thanaraj, 2002). For this reason, introns are

potential places for insertion or deletion of fragments in proteins, thus potential places

for significant changes in protein structure. Several studies reviewed byPatthy(1999)

illustrate how transposable introns can potentially modify protein structure by adding or

removing small peptides inside the host fold. Insertion of this sort of introns is more

likely to be selectively neutral if most of the transposon is removed upon mRNA splicing;

introns would then be evolutionarily accepted in positions of the fold that can tolerate the

insertion or deletion (if an imperfect excision occurs) of a few residues.

Introns can be located separating complete functional domains, as more traditionally

thought of in terms of protein evolution (Chothiaet al., 2003), but they can also split the

exonic components of individual functional domains. We will further explore this here,

trying to investigate whether intron-exon boundary (IEB) information could potentially

be useful in protein design and modelling.

It is generally accepted that rational protein design involves searching vast sequence

and conformational spaces (see for instanceLooger & Hellinga(2001)). To reduce the

search space, many of the early design attempts have focused only on redesigning pro-

teins with a fixed backbone, or allowing small backbone movements (Reinaet al., 2002;

Loogeret al., 2003). If significant modifications of functions are to be accomplished,

perhaps larger backbone movements will be needed. However, to accomplish this it is

necessary to know how to accommodate these large changes whilst keeping the protein

fold stable. A possible approach could be using an ensemble of homologous proteins and

identifying key hybridisation points. Indeed recent work in this direction has been con-

ducted experimentally (Voigt et al., 2002). Following this lead, which suggests that IEBs

could lie at special locations within protein folds, we considered two completed eukary-

otic genomes, mouse and man, and decided to look at the protein structure level to check

if IEBs are indeed different to the other residues in a protein.

4.1 Intron survey within protein structures

This part of the work was done in close collaboration with Pall F.Jonsson, graduate student

in the Biomolecular Modelling Laboratory, and therefore he is acknowledged here as co-
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author of the results shown within this section (Contreras-Moreiraet al., 2003c).

A set of 684 human and mouse protein structures, and their amino acid sequences,

extracted from the PDB (see Section4.7) was taken as the sample for the following sta-

tistical analysis. In this Section, IEB residues are defined as those sitting immediately to

the left of a given intron at the DNA level.

4.1.1 Secondary structure context of IEBs

Residues at IEBs were assigned a secondary structure type as calculated by the program

DSSP. A simple analysis was done to compare the secondary structure nature at the bound-

aries to the expected (background) frequency of secondary structure states on the same

dataset. The results, shown in Table4.1, show a significant preference for intron bound-

aries to occur in coil regions of proteins and less insideα-helices and extendedβ -strand

elements. This could indicate that insertion of introns into sections of ordered structure,

such asα-helices andβ -sheets, is likely to affect the overall structure and function which,

in return, affects the protein’s fitness in natural selection terms. Furthermore, even when

boundaries occur within strands and helices, they tend to be close to the end of their se-

condary structure element, as shown in Table4.2. This is especially apparent for exon

boundaries in extended strands. The data supports the hypothesis that boundaries tend to

occur in less ordered areas. However, as shown in Table4.1, IEB residues seem to have

no overall preference with respect to the phase of their adjacent exons. This fact does

not necessarily contradict previous models predicting that some phase arrangements are

preferred within the same gene or between homologous genes to allow intronic recombi-

nation (Patthy, 1999).

After this survey was done we found in the literature similar observations, in agree-

ment with our data, although extracted from very small datasets (Craiket al., 1982, 1983).

4.1.2 Local structural variability at IEBs

The relationship between structure conservation and IEBs was studied by mapping the

boundaries on pairs of homologous human and mouse PDB structures with a pairwise

sequence identity≥ 40%. These pairs were structurally aligned (usingmsuper) and struc-

tural deviations at boundary positions compared to the overall deviation between each (see

Section4.7 for details). The structure conservation of boundaries in coil regions, helices

and strands was not found to differ significantly from the expected values, as shown in

Table4.3. The location of boundaries does not therefore appear to be in significantly more

divergent regions between homologous proteins. Hence, the reason why these boundaries
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(3-state) DSSP structure f reqobs f reqexp ∆ phase0 phase1 phase2

C - No secondary structure776 544 +43% 279 262 235

C - Isolatedβ -bridge 29 31 -6% 10 9 10

C - Hydrogen bonded turn 308 288 +7% 106 111 91

C - Bend 260 265 -2% 90 72 98

E - extendedβ -strand 430 537 -20% 130 148 152

H - α-helix 570 702 -19% 199 174 197

H - 310-helix 73 80 -9% 27 22 24

H - 5-helix 1 0 0 1 0

Table 4.1: Observed and expected frequencies of IEB within DSSP assigned secondary structure elements.

The total number of intron residues is 2447, out of a total of 116,740 residues. The most significant differ-

ences are highlighted in bold. The observed differences between the observed frequencies and the expected

according to the background are highly unlikely to be random, according to aχ2 test with 7 degrees of

freedom (p� 0.001). The three right columns show the phase of the preceding exon for each IEB. We

found no overall differential distribution of IEBs with respect to exon phases.

set of IEBs endobs endexp midobs midexp p(χ2
1)

all β -strands 184 (0.41) 45 (0.1) 266 (0.59) 405 (0.9)p = 9.3·10−106

conservedβ -strands 13 (0.21) 6.2 (0.1) 49 (0.79) 55.8 (0.9)p = 0.004

all α-helices 114 (0.2) 57.9 (0.1) 465 (0.8) 521.1 (0.9)p = 7.7·10−15

conservedα-helices 15 (0.25) 6 (0.1) 45 (0.75) 54 (0.9) p = 0.0001

Table 4.2: Frequency of intron-exon boundaries appearing at the ends of extendedβ -strands andα-helical

structures. Ends are defined as the first or last 5% of the secondary structure element length. Shown are

the frequencies for all exons as well as the subset of conserved exons between mouse and human. The

differences are significant according toχ2 tests with 1 degree of freedom.

are preferentially found in coils and at the ends ofα-helices andβ -strands is not clear.

Perhaps this is to allow variable packing of exons. To assess this we compared the packing

of exons in homologous proteins.

4.1.3 Packing of exons using structural alignments

We used a method based onmsuperalignments to assess whether exons can have al-

ternative packing arrangements with hinge points located on IEBs. For this study the

previously described set of homologous human-mouse sequence pairs was used. Each

pair was aligned by sequence and two adjacent windows, representing two exons of aver-
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bin (σ ) Cobs Cexp Hobs Hexp Eobs Eexp

-1.5 1 1 1 2 0 1

-1 4 7 13 9 9 9

-0.5 85 90 88 86 37 58

0 170 139 73 75 77 67

0.5 40 46 18 17 14 15

1 24 32 8 9 10 8

1.5 17 18 6 5 5 5

2 14 15 1 4 4 2

2.5 8 9 1 2 1 1

3 2 6 0 1 1 1

3.5 2 3 0 1 5 1

4 2 3 1 0 5 0

Table 4.3: Structural conservation of IEB residues after structural superimposition. Observed and expected

values are shown for coil (C), extendedβ -strands (E) andα-helices (H) after standardising the original data

(in the range [0-9]̊A). These distributions are not significantly different according to aχ2
11 distribution, with

p values over 0.2.

age length, were shifted along the sequence pairs, and a structural alignment performed

by superimposing the two left hand exons on each other, carrying over the structure of the

right hand exons, as described in Section4.7. Flexibility at each position was assessed as

the angle between vectors from the N-terminus to the centre of geometry of each of the

right hand exons (see insert to Figure4.1). This angle was used as an indication of the

structural deviation between the pair at each point. No significant difference (p = 0.62

for a χ2 test, with 12 degrees of freedom) was found in the distribution of angles at IEBs

compared to background distribution as shown in Figure4.1. This would suggest either

that evolution does not favour increased diversity of packing between homologous ex-

ons or the method we used is not sensitive enough to pick up hinge points in boundary

locations.

4.1.4 Analysis of tertiary structure contacts

Previous work suggests the importance of tertiary contacts in understanding the interac-

tions between components of a fold (Voigt et al., 2002; Berezovskyet al., 2000; Bere-

zovsky & Trifonov, 2001). Trying to understand our findings, we also looked at the distri-
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Figure 4.1: Distribution of standardised normal deviates of angles in intron-exon boundaries (black) and

the background (grey) with a mean value of 8.1 degrees and standard deviation of 6.7 degrees. Greater Z

values represent higher degree of variability between a homologous pair at a specific position. There is

not a significant difference between the samples (p = 0.62 for χ2
11). The insert shows a schematic diagram

of the calculation on a pair of proteins consisting of two exons. Centres of geometry are depicted. By

superimposing the left-hand exons and carrying over the right-hand exons as rigid bodies, an angleα can

be measured (Figure courtesy of Pall F.Jonsson).

bution of contacts around IEBs as compared to non-boundary residues along the primary

sequence. Much work has been done in the past to address the conservation of introns

by building multiple alignments of homologous sequences from different organisms (Fe-

dorovet al., 2001, 2002; Bettset al., 2001). Despite the limitation of using only human

and murine proteins, we also wanted to check if conserved and non-conserved introns are

different in terms of contacts. Results (Figure4.2 A) show that, in our relatively large

dataset, boundary-residues are in general no different, in terms of their contact profile,

compared with the rest of the protein. Low-contact regions are preferably occupied by

coil residues, irrespective of the existence of a boundary there. However, as shown in

Figure4.2B and C, coil boundary-residues seem to be preferred for low-contact regions

in the subset of conserved boundaries.
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Figure 4.2: (A) Distribution of contacts per residue in a population of intron boundaries as compared to

a population of randomly chosen residues. Contacts are calculated as explained in Materials and Methods,

by checking residues to the right of the selected position (intron or randomly selected) of the sequence with

residues to the left. The original distribution of contacts along each sequence is smoothed by averaging with

a window of size 5. Three different distributions are plotted, according to the 3-state secondary structure of

the selected position, where C corresponds to coil conformations, H to helices and E to extended strands,

as stated in Table4.1. Random residues are labelled rC, rH and rE. The number of observations is shown in

brackets. (B) and (C) Distribution of contacts for non-conserved and conserved intron boundaries for a set

of non-redundant homologous pairs of human and murine proteins. These distributions were smoothed as

explained above, with a window of size 5.
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4.1.5 Location of IEBs in relation to functional sites

Details of functional residues of proteins in our dataset were extracted from the PDB

and the spatial relationship between exons and functional sites examined. A total of 94

functional sites (as defined in PDB ‘SITE’ records) were obtained from 68 PDB structures

(listed in Table4.4). From the total of 308 IEBs contained in this subset, 18% (55/308)

are located in the vicinity (distance< 7Å) of the functional site. Similar proportions are

obtained when the same calculation is repeated on sets of 308 randomly sampled residues,

suggesting that on average there is no special preference for IEBs to be near important

functional sites.

When examining the exon-composition of functional sites we found that 34% (106/308)

of intron boundaries in our set separate residues forming these sites. In total, 48 out of 94

functional sites contain residues belonging to separate exons. Again these observations

follow similar proportions as those obtained when repeating the calculations with ran-

domly chosen residues, suggesting that this is not an exclusive feature of intron bound-

aries. In summary, these results suggest that the pressure of selection that boundary-

residues support, in relation to their effect on the protein’s function, is not different from

that of the rest of the protein.

Table 4.4: Description of the 94 functional sites used in this work, as extracted from the PDB. The

‘Residues’ column indicates the number of residues within each site.

PDB chain Site Residues PDB Annotation

1cffa CA1 5 Calmodulin

1cffa CA2 5

1cffa CA3 5

1cffa CA4 5

3ayka ZNA 3 matrix metalloproteinase

3ayka ZNB 3

3ayka CAB 3

3ayka CGS 12

1gs4a AC1 11 human androgen receptor, ligandbinding domain

(cortisol)

1gs4a AC2 5

1rpma ATE 1 protein tyrosine phosphatase mu

2gmfa REA 14 human granulocyte macrophage colony stimulating

factor

(continued on next page)
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Table 4.4:

(continued from previous page)
PDB chain Site Residues PDB Annotation

1gula GTE 11 glutathione transferase

1gula HTE 8

1h4wa CAT 3 structure of human trypsin IV (brain trypsin)

1h4wa BEN 8

1h4wa CA 4

1h6fa MO6 3 tbx3, t-box transcription factor, ulnar-mammary syn-

drome

1h6ha AC1 8 px domain from p40phox bound to phosphatidylinos-

itol 3-phosphate

1mema CAT 3 crystal structure of cathepsin k complexed with a po-

tent vinyl sulfone inhibitor

1vhra RCA 11 human vh1-related dual-specificity phosphatase

1bio NUL 3 human complement factor D in complex with isatoic

anhydride

1gxca TPB 5 fha domain from human chk2 kinase in complex with

a synthetic phosphopeptide

1h8dh AC1 14 human alpha-thrombin complex with a tripeptide

phosphonate inhibitor

1klt CIC 3 pmsf-treated human chymase (Serine protease)

1mfma ZN 5 copper,zinc superoxide dismutase

1mfma CU 4

1trna CAT 3 trypsin (e.c.3.4.21.4) complexed with the inhibitor

diisopropyl-fluorophosphofluoridate

1h9oa PTR 7 phosphatidylinositol 3-kinase, p85-alpha subunit

1kpf HNE 3 protein kinase pkci-1 with inhibitor

1kpf AVE 1

5gdsh CAT 3 human alpha-thrombin:hirunorm V complex

1bp3a ZNA 2 growth hormone-prolactin receptor complex

1bsxa A 9 thyroid hormone receptor beta

1c25 DSU 2 cdc25a catalytic domain

1c25 POP 7

(continued on next page)
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Table 4.4:

(continued from previous page)
PDB chain Site Residues PDB Annotation

1hazb CAT 3 porcine pancreatic elastase and human beta-

casomorphin-7

1qf8a ZF1 4 casein kinase beta subunit

1buia ASA 3 microplasmin-staphylokinase complex

1fit AVE 1 fragile histidine triad protein(chromosomal transloca-

tion)

1fj2a ACA 3 human acyl protein thioesterase

1hd2a BEZ 10 antioxidant enzyme human peroxiredoxin

1hdoa AC1 24 biliverdin-ix beta reductase:NADP complex

1qh5a ZNA 8 human glyoxalase ii with s-(n-hydroxy-n-

bromophenylcarbamoyl)glutathion

1hh8a FLC 10 phagocyte oxidase factor

1znca CTA 5 human carbonic anhydrase IV(lyase)

2fha FOX 8 human H chain ferritin

1e42a AC1 5 beta2-adaptin appendage domain from clathrin adap-

tor ap2 (Mg)

1qnta ACC 1 human o6alkylguanine-DNA alkyltransferase

1qr2a ZNA 3 human quinone reductase type 2

1uch CAT 4 deubiquitinating enzyme uch-l3(Cysteine protease)

2hft VII 5 human tissue coagulation factor

2hhma M1 7 human inositol monophosphatase (e.c.3.1.3.25) com-

plex with gadolinium and sulfatehydrolase

1e9ea TMP 10 human thymidylate kinase (f105y) complexed with

dtmp

1e9ea ADP 12

1sra EF1 5 calcium-binding protein (osteonectin)

1sra EF2 5

1sra MET 3

1eaxa SO4 4 matriptase, membrane-type serine protease

1eaxa BEN 8

(continued on next page)
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Table 4.4:

(continued from previous page)
PDB chain Site Residues PDB Annotation

1eaza LBS 8 phosphoinositol (3,4)-bisphosphate binding PH do-

main of tapp1

1aoxa MGA 5 I domain from integrin alpha2-beta1

1ap6a MNA 4 human mitochondrial manganese superoxide dismu-

tase

1b08a CR1 5 lung surfactant protein D(sugar binding)

1autc CAT 3 human activated protein C

1rbp R1 9 retinol binding protein

1rbp R2 7

1ggla LBS 5 human cellular retinol binding protein III

1pina ACT 3 pin1 peptidyl-prolyl cis-trans isomerase from Homo

sapiens

1gkda BUA 4 matrix metalloprotease MMP9 active site mutant-

inhibitor complex

1gloa CAT 3 cys25ser mutant of human cathepsin S

1icfa ACT 2 cathepsin l(Cysteine proteinase)

1ido MG 6 I-domain from integrin CR3, Mg2+ bound

1cyna BIN 13 cyclophilin B complexed with [d-

(cholinylester)Ser8]-cyclosporin

1gmya ACT 1 cathepsin B complexed with dipeptidyl nitrile in-

hibitor

1gnua NI 2 GABA(A) receptor associated protein gabarap

1o7ka API 2 human p47 PX domain complex with sulphates

1o7ka APA 3

1psra HO 4 human psoriasin (s100a7),Ca2+ substituted for HO3+

(EF-hand protein)

1rlw CR1 12 calcium-phospholipid binding domain from cytosolic

phospholipase A2

1rlw CR2 5

1rlw CR3 8

1rlw CA1 1

(continued on next page)
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Table 4.4:

(continued from previous page)
PDB chain Site Residues PDB Annotation

1rlw CA2 1

2mfn RGD 3 cell attachment modules of mouse fibronectin con-

taining the rgd and synergy regions

2mfn SGY 5

1npma ACA 3 neuropsin, a Serine protease expressed in the limbic

system

1vhh ZN1 4 amino-terminal domain (residues 34 - 195) of sig-

nalling protein sonic hedgehog

1eaqa CL1 3 runx1 runt domain: structural switch and bound chlo-

ride ions modulate DNA binding

1ao5a A 3 mouse glandular kallikrein-13 (prorenin converting

enzyme)

1glqa GA 7 transferase(glutathione)

1glqa HA 5

1gmla AC1 2 mouse CCT gamma apical domain(chaperone)

2znc ZN 3 murine carbonic anhydrase IV

4.2 in silico recombination crossover hot spots seem to

avoid IEBs

Taken together, the results presented so far suggest that there is some evolutionary feed-

back between where introns reside in genes and the proteins coded by those genes, al-

though this might have only weak connections to protein function. In terms of protein

evolution, it would make sense to think of introns being placed into the more flexible or

loosely packed parts of a fold, because that way the risk of disrupting the protein if the

intron boundaries are lost or substantially modified (for example through insertion of a do-

main), is minimisedPatthy(1999). Therefore, it should be possible to find places inside

particular protein folds where introns are more likely to occur. Put in a different way, in-

trons could be marking places along a fold primary structure, and the corresponding gene

structure, where it is easier to modify proteins while maintaining the fold. However, as
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seen in the previous sections, contacts or flexibility alone are not enough to identify these

positions. To explore how these boundaries could be located, the following experiment

was carried out. A group of 22 human and murine proteins, extracted from the initial PDB

dataset, was selected as explained in Section4.7. For each of them, comparative models

were built using as many templates from the same or different species as possible. This

included many templates for which we had no information on intron placement and even

bacterial proteins with no introns at all. This information is summarised in Table4.5. The

resulting 22 populations of models were subsequently recombined. The recombination

protocol was modified (see Section4.7) in order to allow crossover points to occur in

any residue and to improve the mutation mechanism. Results are shown in Figures4.3

and4.4. From a total number of 71 boundary-residues found in the dataset, 56 (79%)

have less than 5% of frequency of recombination (compared to 65% expected by chance,

p = 0.01 for χ2
1). In other words, the observed crossover hot spots in the 22 recombinant

populations of proteins tend to occur away from natural IEBs, although this correlation

is weak. Hence, we essentially obtain a blurred negative image of IEB location by the

use of our synthetic recombination approach. This is likely to be a consequence of the

rigid crossover protocol, that is unable to emulate the natural accommodating flexibility

of proteins. Since our artificial protein recombination protocol ignores where introns are

and only optimizes the structural fitness of a population of proteins, these results suggest

that location of introns is an important factor affecting protein fitness, in agreement with

genetic evidence (Patthy, 1999). Voigt et al. (2002) proposed in a recent paper that the

correlation between introns and protein building blocks could occur as a result of natural

selection, regardless of their early or late origin. However, as Figures4.3 and4.4 show,

contact profiles were calculated for each of the 22 populations and no spatial correlation

could be seen between regions with relatively few contacts and natural IEBs, as would

have been expected. This suggests that it may be too simplistic to assume that boundaries

separate autonomous sections within proteins.

Table 4.5: Subset of 22 proteins used in the recombination experiments.

PDB (PFAM family) annotation Templates and

sequence identity

range

Origin of homologous templates

1f5xa (PF00621) Rho GEF domain 9, 100%-19% Homo sapiens, Mus musculus

1bc9 (PF01369) Sec7 guanine-nucleotide-exchange factor

domain

3, 100%-37% H.sapiens, Saccharomyces cere-

visiae

1bci (PF00168) C2 domain of cytosolic phospholipase A219, 100%-20% H.sapiens, Rattus norvegicus, Rat-

tus rattus

1a66a (PF00554) Rel homology domain, eukaryotic tran-

scription factor

11, 100%-23% H.sapiens, M.musculus, Anopheles

gambiae

(continued on next page)
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Table 4.5:

(continued from previous page)
PDB (PFAM family) annotation Templates and

sequence identity

range

Origin of homologous templates

1ak6 (PF00241) Cofilin/tropomyosin-type actin-binding

protein

9,100%-22% H.sapiens, M.musculus, Sus scr-

ufa, Acanthamoeba castellanii,

S.cerevisiae, A.thaliana

1bv8a (PF00207) Alpha-2-macroglobulin 3, 100%-62% H.sapiens, Paracoccus denitrifi-

cans, R.norvegicus

1b4qa (PF00462) Glutaredoxin 10, 100%-20% H.sapiens, phage T4, E.coli,

S.scrufa

1ayk (PF00413) Matrixin, metalloprotease 15, 100%-59% H.sapiens, S.scrufa

1cmza (PF00615) Regulator of G protein signaling domain

GAIP

7, 100%-31% H.sapiens, R.norvegicus, Bos tau-

rus

1gcf (PF00041) C-terminal domain of granulocyte colony-

stimulating factor receptor

10, 100%-16% M.musculus, Oryctolagus cunicu-

lus, H.sapiens,Ovis aries

1blj (PF00017) BLK SH2 domain 19, 100%-51% M.musculus, H.sapiens, Rous’s sar-

coma virus, Gallus gallus

1ceea (PF00071) Ras family, CDC42 21, 100%-42% H.sapiens, M.musculus,

Salmonella typhimurium

1etc (PF00178) Ets-domain 14, 100%-36% M.musculus, H.sapiens

1df3a (PF00061) Lipocalin / cytosolic fatty-acid binding 20, 100%-16% M.musculus, B.taurus,S.scrufa,

R.norvegicus

1l3na (PF00080) Copper/zinc superoxide dismutase 12, 100%-27% H.sapiens, S.typhimurium, E.coli,

Spinacea oleracea,B.taurus, Xeno-

pus laevis,Photobacterium leiog-

nathi,Actinobacillus pleuropneu-

moniae, S.cerevisiae

1gnc (PF00489) Interleukin-6/G-CSF/MGF family 10, 100%-15% H.sapiens, C.familiaris

1iy3a (PF00062) C-type lysozyme/alpha-lactalbumin fam-

ily

11, 100%-34% H.sapiens, Phasianus colchicus,

Cavia porcellus, B.taurus, Capra

hircus, Tachyglossus aculeatus,

Oncorhynchus mykiss, G.gallus,

Canis familiaris, Equus caballus,

Coturnix coturnix

1gd5a (PF00787) PX domain 4, 100%-12% H.sapiens, Staphylococcus aureus,

S.cerevisiae

1glqa (PF00043) Glutathione S-transferase 11, 100%-16% H.sapiens,Zea mays,

M.musculus,A.thaliana

1f16a (PF00452) Apoptosis regulator proteins, Bcl-2 family12, 100%-16% H.sapiens, R.norvegicus, E.coli,

M.musculus, Kaposi’s sarcome her-

pesvirus

1ig6a (PF01388) ARID/BRIGHT DNA binding domain 7, 100%-20% H.sapiens, Drosophila

melanogaster, E.coli, S.cerevisiae

1h4wa (PF00089) Trypsin 14, 100%-38% R.rattus, S.scrufa, B.taurus,

H.sapiens, E.coli, R.norvegicus
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Figure 4.3: Frequency of crossover (pink) and tertiary contacts (blue) along the primary sequence of 12

human and mouse proteins. Vertical bars indicate where natural intron boundaries are found in the human

or mouse sampled proteins. Crossover frequencies were smoothed by averaging inside a window of length

7 (similar plots are obtained with other values). The Y-axis shows the observed frequency of crossover in

each of the evolving protein populations and the number of contacts divided by the length of the protein.

The X-axis represents the amino acid sequence of each protein. Contacts are calculated as explained in

Section4.7.
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Figure 4.4: Frequency of crossover (pink) and tertiary contacts (blue) along the primary sequence of 10

human and mouse proteins (continuation of4.3). The Y-axis shows the observed frequency of crossover in

each of the evolving protein populations and the number of contacts divided by the length of the protein.

The X-axis represents the amino acid sequence of each protein. Two examples explained in the text are

shaded.

4.3 Implications for protein design

One of the main assumptions of this work is that introns are involved in the duplication,

deletion and insertion of exons, and in the generation of chimeric protein-coding genes, as

reviewed byPatthy(1999). Therefore, the fact that IEBs tend to exist away from artificial

crossover hot spots could be applied to engineer proteins where one may want to insert

fragments or to design chimeras. In silico recombination experiments could help in this

task. In some cases, such as 1iy3a (see Figure4.4), artificial crossover regions are highly
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localised. Where this occurs, the information retrieved from these experiments is of little

use, since large sections of the polypeptide have not been properly sampled. In other

cases, such as 1bc9 or 1df3a (see Figures4.3 and4.4), recombination hot spots are well

spread along the primary structure and their distribution could really help in the search

for potential IEBs. This could be used to locate putative places for intron insertion within

proteins that may have lost them, such as prokaryotic or even artificial proteins.

It is not clear if the difference in the distribution of artificial and natural crossover

points is a property of proteins or just a consequence of the way the recombination al-

gorithm works. Nevertheless the output of these simulations could be useful, especially

when natural proteins show that introns can occur in any secondary structure environ-

ment and simple rules, despite the enrichment in coils observed in our data, have not been

found.

Two examples in which artificial recombination was applied are now explained in

more detail, with the aim of illustrating the relative importance of natural and artificially

selected crossover points and to show how close IEB residues can be to functional sites.

4.3.1 Example 1: human Mrf-2 DNA-binding motif

Several structural studies on this protein (Yuan et al., 1998; Whitsonet al., 1999; Zhu

et al., 2001) and its homologous sequences allowed us to build comparative models for

all of them and perform artificial protein recombination, generating a profile as shown in

Figure4.4 (1ig6a). This protein specifically recognises a DNA sequence through helix 5

(major groove, see H5 in Figure4.5) and two loops (minor groove, L1 and major groove,

L2). Note that the frequency of crossover where natural introns are contained in the gene

(numbered 1, 2, 3) is low. This result could help in the task of designing a composite tran-

scription factor by showing which regions are more spatially constrained across evolution

and which are less likely to disrupt the fold if modified. In this case, the N-terminal part

of the L1 DNA-recognition loop is positively selected as a possible crossover point and

it is this region that is predicted to interact with DNA (Zhu et al., 2001). The C-terminal

part of this loop appears not to interact with DNA but it is an integral part of the fold; thus

changes here could impact directly on the fold stability and hence function. On the same

lines, variability could be introduced into the major groove recognising helix (H5), where

boundary 3 is located. However, recombining in these blue regions, e.g. near natural

boundaries, could potentially cause a loss of function.
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Figure 4.5: Protein recombination profile of human Mrf-2 DNA-binding domain mapped onto its three-

dimensions model (1ig6a in Figure4.4). N and C-termini are labelled. Helix 5 (H5) and loop 2 (L2) interact

with the major groove of DNA, L1 with the minor groove. Introns found in the corresponding human gene

are numbered 1, 2, and 3. Frequency of recombination is mapped to the protein backbone and represented

as a colour gradient. Regions close to red are positively selected as crossover points, points that anchor

recombination events and improve the fitness of the fold. Blue regions were not selected in the simulation.

This diagram was prepared using Rasmol (Sayle & Milner-White, 1995) and Molscript (Kraulis, 1991).

4.3.2 Example 2: human brain trypsin

This example was chosen because it is an enzyme containing three IEBs, marked as 1, 2

and 3 (see Figure4.6). Two of them are in close proximity (< 7Å) to the catalytic site,

occupied in the figure by an inhibitor, as found in the PDB (Katonaet al., 2002). A total

of 14 PDB templates were used to build comparative models, with sequence identities

ranging from 38 to 100%, and these were subsequently recombined (see the profile in

Figure 4.4, 1h4wa). The frequency of crossover along the sequence is shown by the

variability of the colour of the backbone in Figure4.6. Note that most of the recorded

crossover events are at the surface of the protein, away from the binding pocket, in places

that, nevertheless, affect the specificity of the enzyme (Perona & Craik, 1997). Unlike 1

and 3, boundary 2 is very close to an artificial recombination hot spot and stands more

than 10̊A away from the catalytic site. The four exons that build up this protein are shown
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in Figure4.7 with different colours. Clearly the binding site is the result of the precise

packing of at least three exons and thus recombining at the boundaries between these

exons (1 and 3) could be directly deleterious to the protein’s function.

Figure 4.6: Protein recombination profile of human brain trypsin mapped onto its three-dimensional model

(1h4wa in Figure4.4), using the same colour scheme as in Figure4.5. Intron boundaries are labelled 1, 2,

and 3, as well as the N and C termini. An inhibitor to the active site, as deposited in the PDB(Katonaet al.,

2002), is shown in white. This diagram was prepared using Rasmol (Sayle & Milner-White, 1995) and

Molscript (Kraulis, 1991).

4.4 Discussion

In higher eukaryotes gene coding regions tend to be a small proportion of the genes, hence

there is a higher probability of natural recombination events occurring at non-coding re-

gions, including introns. In the context of the protein fold, introns could be acting as

buffer regions that accommodate exon packing upon natural recombination, or even for

accommodating entirely new domains. However, in our artificial recombination simula-

tions we observe the opposite; crossover hot spots seem to steer away from intron bound-

aries. This is probably a consequence of the superimposition-based method used for our
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Figure 4.7: Exon structure of human brain trypsin, with 4 exons identified by different colours, showing

that a close coordination between them is needed to form the active site.

recombination but also of the complex packing between exons in some cases (as shown

in Figure4.7). Because we treat protein fragments as rigid bodies we cannot simulate this

accommodation. Perhaps by using protein docking techniques involving some flexibility

we will be able to successfully recombine in virtually all parts of the protein, but at the

cost of not longer being able to highlight natural IEBs. Thus the coarseness of our current

approach may actually be an advantage.

The data presented here suggests an evolutionary feedback mechanism between nat-

ural introns and the effect they have on protein folds. Although there seems to be an

enrichment of IEBs in coils and the ends of secondary structure elements, some natural

introns occur at the midpoints ofα-helices orβ -strands. Therefore, in the task of design-

ing protein recombination experiments, it is not possible to rule out regions according to

their secondary structure. More complex criteria, such as protein structural fitness, tested

here, may be needed. This is a stability criterion, which is not necessarily correlated

to function. If function is to be modified or selected, extra restraints (or complemen-

tary functional experiments) should be required in the optimisation procedure. Indeed,

recentlyPetersen & Taylor(2003) applied this sort of ideas to the design of novel zinc
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binding proteins.

The statistical analysis performed here could also be useful to improve our protein

recombination protocol. In particular, after this work, it seems necessary to allow the

genetic algorithm to recombine proteins regardless of the secondary structure state of the

residues involved, not just in loops. In addition, if flexibility is added, it could be useful to

positively discriminate for intron boundary residues (when known) during recombination

simulations. Nevertheless, currently it seems perhaps surprisingly difficult to successfully

recombine on boundary regions, pointing to the possibility that crossing-over here may

affect more dramatically protein folds, as measured with our fitness function.

What is the importance of IEB residues for protein specificity? From our data it seems

that they are not more important in order to modify protein specificity than other residues

in a protein; perhaps artificial crossover hot spots should be considered for these tasks.

Furthermore, while usually there are only a few IEBs in a protein, artificial recombination

protocols such as the one tested here may point out larger subsets of residues that are

structurally conserved between homologous structures.

Finally, in relation to the introns early/late debate, our findings cannot exclude ei-

ther theory. Some results seem to support an early origin of introns (such as secondary

structure preferences) whilst others could be taken as evidence for their late origin (both

packing and flexibility results). Our results seem to agree with a model in which both

theories are compatible.

4.5 Conclusions

In this Chapter we did a series of statistical analyses and simulations approaching an

evolutionary problem: the relation between the exonic scaffold of genes and the tertiary

structure of the proteins that they code. In particular we look at the exonic components of

folds, avoiding multi-domain proteins. In this analysis we learnt that introns do not pop-

ulate randomly the genes in which they live, especially when protein secondary structure

is considered. Their possible links to protein function were also explored, but our results

suggest that the distribution of IEBs within protein folds is not affected significantly by

their proximity to functional sites. Trying to investigate if these findings could be used

in protein design, we generated protein crossover profiles and correlated them to protein

function and structure. A weak negative correlation is found between natural IEBS and

artificial crossover hot spots. In addition, it seems that crossover profiles can be useful

to highlight regions related to enzymatic specificity or segments in protein folds where

recombination events are more likely to be successful. These later findings will need
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experimental studies in the laboratory to be fully appreciated. If there is a clear rule of

thumb resulting from this work is that nature prefers to put IEBs in loops, and so protein

engineers should use loops to make substantial modifications of protein folds or to make

chimeras.

4.6 Problems and possible developments

The analysis done in this chapter shows some interesting data, but nevertheless some

problems were found. To further the extent of the analysis the following points should be

considered:

• The protocol for protein recombination, used here and explained in the previous

chapter, is a way of avoiding the step of selecting templates for Comparative Mod-

elling. However, the goal here is not building models, it is to highlight certain

regions along proteins. Here templates from different origins are mixed in a pool

of models with the aim of obtaining artificial recombination profiles. How much

the initial composition of the pool determines the outcome of the recombination

simulations is a question that we have not answered. Further work in this direction

may be important, since this issue could directly affect the sampling of crossover

points along a protein fold.

• As explained in Chapter3, the recombination protocol is non-deterministic and

therefore it can generate different outputs for the same input. For this reason, given

more computing time, it will be necessary to compare different recombination runs

for the same initial pool of CM models and analyse the differences and the simi-

larities between their recombination profiles. This is important since the negative

correlation found in this work between the placement of IEBs and crossover hot

spots is weak. Perhaps building consensus crossover profiles would be a good idea.

However, this correlation could also be genuinely weak or even just a consequence

of the dataset used here. In either case, these seem to be important things to check

in future work. Nevertheless, the data presented here suggests that, even in the ab-

sence of a clear correlation, crossover profiles should be useful for protein design

studies, such as changing the specificity of enzymes.

• An important limitation of the recombination procedure tested here is the need for

different templates to generate an initial pool of models. At this moment in time we

do not know if alternative structures for the same molecule, such as those extracted
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from different experimental conditions or techniques (crystallography,NMR or even

MD), could also be used.

• In Section4.4we discussed the possibility of introducing flexibility into the crossover

mechanism, by perhaps using protein docking techniques. This remains to be done.

• The data shown here (see Section4.1.1) suggests certain preferences at the se-

condary structure level for the placement of IEBs. This preferences could be used

to bias the occurrence of crossover events along a protein’s sequence.

4.7 Materials and Methods

Datasets. The protein set used throughout this work was composed of human and mouse

proteins obtained from the Protein Data Bank (PDB, as of 22nd January 2003). To avoid

large multidomain proteins, only structures with at least 100 residues but no more than

300 were selected. To avoid spliced genes, immunoglobulins and T-cell receptors were

identified by sequence similarity and excluded from this dataset. Chimeric proteins were

also excluded. After excluding proteins with only one exon (about 25% of the original

set), this dataset contained a total of 684 PDB chains. These proteins contain, on aver-

age, 3.2 introns. For the study of human-mouse homologous proteins, human and mouse

sequence pairs of sequence identity above 40% were extracted from the above dataset,

resulting in 118 pairs. Many homologous sequences are contained in this set but no effort

was made to remove redundancy, since it was observed that almost identical proteins may

have a different number of introns, in different positions along the sequence.

A subset of 22 proteins (shown in Table4.5), selected to cover different folds and func-

tions was used to perform recombination experiments with comparative models built from

both evolutionary close and remote homologous structures in the PDB. These 22 proteins

were selected to avoid multi-domain proteins, and have diverse comparative modelling

templates that could be confidently aligned.

Assignment of introns. Intron boundaries were assigned by mapping protein sequences

to the human (NCBI Human Contig Assembly 31, November 2002 freeze) and murine

(MGSCv3 release 3, February 2002 freeze34) genome assemblies, using the BLAT server

(Kent, 2002). When using protein amino acid sequences in this work, IEBs are defined

as the residues corresponding to the left side boundary at the DNA level. Introns in

homologous proteins are said to be conserved if they occupy exactly the same place in the

structural alignment of those proteins.
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Secondary structure, comparative modelling. Protein secondary-structure was as-

signed using the program DSSP (Kabsch & Sander, 1983). Comparative protein models

were built using our server 3D-JIGSAW in the interactive mode, using alignments with

bit-scores of at least 1.8 and as many different templates as possible. Some templates were

extracted from the corresponding PFAM families (see Table4.5) using DomainFishing.

Calculation of contacts. To calculate the tertiary contacts around a given residue r,

everyCβ from residues to the left of r was checked against everyCβ to the right in the

protein sequence, calculated in a similar fashion toVoigt et al. (2002). A contact was

then defined as a pair ofCβ separated less than 7.0Å in Cartesian space and more than 4

residues in sequence, as previously described (Hu et al., 2002).

Recombination of proteins. The protein recombination protocol used is a modification

of the one previously described (see Section3.10), that adds new side chains in every

mutation event using the program SCWRL (Dunbrack & Karplus, 1993) and performs up

to 5 rounds of steepest descent minimisation on every newly created sibling (the C code

for this minimisation protocol was written by Paul W.Fitzjohn). Crossover events are

not restricted to any secondary structure state, since it was observed that, despite some

preferences, natural IEB boundaries can be located in any context. Sampled artificial

crossover points were recorded in real time (in the PDB format B-factor column) to be

later analysed and create the profiles shown in Figures4.3and4.4.

Local flexibility at intron-exon boundaries. A subset (118) of homologous human-

mouse pairs with pairwise sequence identity over 40% was extracted from our original

dataset. IEBs were mapped onto PDB structures and each of the human-mouse sequence

pairs superimposed usingmsuper. A window of seven residues was moved along the

superposition and the fitness of the alignment recorded by summingmsuperalignment

scores, ranging from 0 for a good fit to 9 for a bad fit (Cβ -Cβ distances, in̊A), for each

of the seven positions. The DSSP program was used to assign the secondary structure

elements for aligned sequences and residues classified as participating in a strand, helix

or coil region. The window scores for each of the three secondary structure elements were

then normalised and the scores for IEBs were compared to the overall expected scores.

Packing of exons using structural alignments. The average exon length in the dataset

of 118 human and mouse sequence pairs of sequence identity over 40% was calculated
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(41 residues). This value was increased by 5% to compensate for alignment gaps be-

tween the pairs, bringing the exon length to 43. Pairs of PDB sequences were aligned

usingClustalwand pairs containing more than 20% alignment gaps were excluded. Two

adjacent windows of the average exon length, representing two theoretical exons, were

moved along the aligned sequence pair and a structural alignment performed usingmsu-

per, superimposing the two left hand exons on each other and carrying over the structure

of the right hand exons as rigid bodies (see Figure4.1). A vector from the N-terminus

of the right hand exon to the centre of geometry of the same exon was calculated for

both sequences and the angle between the vectors determined. This was repeated for the

whole length of the sequence alignment. Sequence alignments too short to yield at least

30 angles were excluded, lowering the total number of pairs to 112. These distributions of

angles were then normalised so that they could be added to create the overall normalised

distributions shown in Figure4.1.
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Chapter 5

Concluding remarks

Three years of work have been condensed in the previous pages. Here I will try to sum-

marise the results obtained and to put them together in a biological context. What does

this work contribute to our biological knowledge? How does this work add to the reper-

toire of computational tools used in molecular Biology?

In Chapter 2 we found that, as far as protein Comparative Modelling is concerned,

none of our sequence alignment techniques can be considered to be perfect and although

it is possible to rank them, in certain situations ‘weaker’ techniques can perform better

than ‘stronger’ ones. Despite these limitations, we designed tools for defining protein

domains, finding structural templates and aligning them. We also explored evaluators of

alignment quality, such asbit-scoresor 3D-conservation maps. Following our analysis

of alignment methods, inChapter 3 we found that, in agreement with observations in

the literature, it is not trivial to select alignments and templates for building a compara-

tive model. Motivated by this we explored a new way of combining this data, by using

a genetic algorithm based on natural genetic recombination. In addition to the genetic

algorithm itself, thisin silico recombination protocol borrowed many of its algorithmic

components, such as dynamic programming, secondary structure assignment or the es-

timation of protein stability. This recycled set of tools, arranged in this particular way,

seems to be able to construct protein models in a robust manner, with the ability to re-

solve at least some alignment conflicts and therefore correct errors. The program is able

to produce alternative but similar protein structures for the same amino acid sequence,

NMR-like ensembles. As our encouraging results (and others (Fischer, 2003)) in CASP5

suggest, this combinatorial approach can be equally useful for Fold Recognition purposes.

Finally, inChapter 4 we applied this newly designed protein recombination methodology

to approach an evolutionary problem: the relation between the exonic scaffold of genes
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and the tertiary structure of the proteins that they code. In this analysis we learnt that

introns do not populate randomly the genes in which they live, especially when protein

secondary structure is considered. Their possible links to protein fitness and function

were also explored. Trying to investigate if these findings could be used in protein de-

sign, we generated protein crossover profiles and correlated them to protein function and

structure. While only a weak negative correlation is found between natural intron-exon

boundaries and artificial crossover hot spots, crossover profiles can be useful to highlight

regions related to enzymatic specificity or segments in protein folds where recombination

events are more likely to be successful.

A set of tools has been developed during the course of this work, in the form of web

servers, to assist the experimentalist. These tools are:

• DomainFishing (http://www.bmm.icnet.uk/˜3djigsaw/domfish), linked to the com-

parative modelling server 3D-JIGSAW, where the user can define domains, find

templates, align them and build protein models easily and interactively. Both servers

are extensively used by the community and their performance can be monitored

through the EVA automatic continuous evaluation. The overall performance of our

approach (see Table2.8), is promising as we are able to model difficult models

without compromising the quality.

• in silico protein recombination, (http://www.bmm.icnet.uk/˜3djigsaw/recomb), where

the user can recombine a set of models obtained from different sources.

http://www.bmm.icnet.uk/~3djigsaw/domprotect unhbox voidb@x kern .06emvbox {hrule width.3em}fish
http://www.bmm.icnet.uk/~3djigsaw/recomb
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Appendix A

The program msuper

msuperstands for multiple structure superimposition and is a computer program written

in C++ based on the published work ofRussell & Barton(1992) andGerstein & Levitt

(1996). This is a progressive multiple structure alignment protocol, related toClustalwin

the sense that it only performs two-dimension dynamic programming and keeps updating

the growing multiple structure profile as new structures are added. A Linux binary and

some documentation can be found at:http://www.bmm.icnet.uk/˜contrera/msuper/.

The cornerstone of the algorithm is the pairwise structural alignment routine,Su-

per (see SectionA.1). This routine includes a global dynamic programming subroutine

(struct align) in which the matrix is filled with the distances between every possible pair

of Cβ atoms of a couple of proteinsp1 andp2. Cβ atoms are preferred toCα to minimise

the chance of misalignments by one residue, especially in strands (Gerstein & Levitt,

1996). Instead of using evolutionary or probabilistic criteria to score matches, a simple

Euclidean distance is taken. The squared distance values are scaled in the range [0-20]

following the criterion used byGerstein & Levitt(1996). For this range of values gap

costs of 2.0 and 0.5 (opening and extension) are adequate.

The two proteins to be structurally aligned are first put in the same frame of reference,

by correcting each atom’s positions with respect to the protein’s centroid. In addition,

it is required thatp1 and p2 are at least approximately superimposed so that equivalent

residues in the pair of proteins come close in space. Formsuperwe used a linear least-

squares minimisation routine written by Andras Aszodi implementing an algorithm pub-

lished byMcLachlan(1979). This routine uses the Singular Value Decomposition (SVD)

algebraic method (see for exampleGershenfeld(1999)), that minimises the RMSD (Equa-

tion 3.5) between two equally sized sets of points. In our algorithm, these sets of points

are the equivalent residues in a global alignment. It is this need for a seed alignment that

http://www.bmm.icnet.uk/~contrera/msuper/
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limits the applicability ofmsuperfor cases with very low sequence similarity. If the seed

alignment is significantly wrong, the rest of the algorithm might not be able to produce a

sensible structural alignment.

By iteratively aligning in distance space and superimposing, the RMSD betweenp1

andp2 usually converges and the final structural alignment is obtained. FollowingRussell

& Barton (1992), the raw dynamic programming scoreDPscoreof the alignmentA is

corrected by considering the amount of insertions and deletions introduced:

Score(A) =
DPscore(A)
Length(A)

· Length(A)−gaps(p1)
Length(p1)

· Length(A)−gaps(p2)
Length(p2)

(A.1)

A.1 Algorithm details

The most important part of the program is theSuperroutine, which is now outlined:

Super( Alignment &Ali , Protein &p1 , Protein &p2 )

{
/∗ Ali is the seed sequence alignment∗/
rmsd = SVD( p1 , p2 , rotationMatrix , Ali );/∗ Singular Value Decomp, see text∗/
Alignment thriD = p1→structalign( p2 );

while(|rmsd - previousrmsd| > 0.005) && (rounds<MaxRounds))

{
rmsd = SVD( p1 , p2 , rotationMatrix , thriD );

thriD = p1→structalign( p2 );

rounds++;

}
/∗ apply final rotation matrix to superimposed p1∗/
p1→apply rotationmatrix( rotationMatrix );

return thriD; /∗ return final sequence alignment∗/
}
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This is themsuperalgorithm:

main( FILE inputfile )

{
while (input file) /∗ read input file and the corresponding PDB files∗/
{

prot =newProtein(PDBfile); /∗ create Protein object from read file∗/
prot→readPDBandDSSP();

prot→checkPDB();/∗ check PDB & add Cbeta to Glycines∗/
prot list.pushback( prot );

}

/∗ all vs. all pairwise alignments∗/
for (i=0;i<prot list.size();i++)

{
for (j=i+1;j<prot list.size();j++)

{
Alignment Seqpair = prot list[i]→Sequence+SSalign( prot list[j] , BLOSUM );

Alignment Strpair = prot list[i]→Super( Seqpair, prot list[j] );

ali stock.pushback( Strpair );

}
}
/∗ rank proteins by their accumulated pairwise scores∗/
sort list proteins( &ali stock , &prot list );

/∗ Start progressive global multiple structural alignment∗/
mult = newMultipleAlignment( protlist[0] );

/∗ mult computes an average Cbeta pseudoprotein as new structures are added∗/
for (i=1;i<prot list.size();i++)

{
Alignment sup = mult.pseudoprotein→Super( alistock[i], prot list[i] );

if (sup.sscore()< badstruct score )break; /∗ stop growing multiple alignment∗/
mult→addali( sup, protlist[i] );

}
}
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A.2 Comparison to SSAP and example

As in Section2.2.1, a set of 317 pairs of homologous SCOP domains was used to compare

Clustalw and Profile1 pairwise alignments to both SSAP andmsuperstructural align-

ments. To evaluate alignments the same shift-score was used (see Section2.2). When

comparing the shift scores obtained with respect tomsuperalignments to those obtained

with SSAP, linear correlation coefficients of 0.86 (Clustalw) and 0.84 (Profile1) were ob-

tained. A graphical representation of these results is shown in FigureA.1.

Figure A.1: Comparison ofmsuperand SSAP reference alignments with respect toClustalwandProfile1

pairwise alignments. Logarithmic fits are also shown, with the thin lines corresponding to the SSAP series

and the thick tomsuper. Note thatmsuperappears to give a closer match to sequence alignments, for the

same shift error, than SSAP. This is probably a consequence of the fact that the initial seed alignment for

msuperis sequence-based.

An example of an alignment comparison is given in TableA.1.
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SSAP:

1d5ya EFTMPEHKFVTLEDTPLIGVTQSYSCSLEQISDFRHEMRYQFWHDFLGNAPTIPPVLYGL

1bowa --RLGEVFVLDEEEIRIIQTEAEG---------IGPENVLNASYSKLKKFIESNNSYGAT

1d5ya NETRPSQDKDDEQEVFYTTALAQDQADGYVLTGHPVMLQGGEYVMFTYEGLGTGVQEFIL

1bowa FSFQPYTSIDE--MTYRHIFTPVL-ISSITPDMEITTIPKGRYACIAYNFSPEHYFLNLQ

1d5ya TVYGTCMPMLNLTRRKGQDIERYYPAEDDRPINLRCELLIPIR

1bowa KLI-KYIADRQLTVV-SDVYELIIPIH----YEYRVEMKIRIL

msuper:

1d5ya EFTMPEHKFVTLEDTPLIGVTQSYSCSLEQ-ISDFRHEMRYQFWHDFLGNAPTIPPVLYG

1bowa --RLGEVFVLDEEEIRIIQTEAEGIG--PENVLNASYSKLKKFI-ES-------NNSYGA

1d5ya LNETRPSQDKDDEQEVFY-TTALAQDQADGYVLTGHPVMLQGGEYVMFTYEGLGTGVQEF

1bowa TF-SFQP-YTSIDEMT-YRHIFTPVL-ISSITPDMEITTIPKGRYACIAYN--F-S-PEH

1d5ya ILTVYGTC-MPML-NL-TRRKGQDIERYYPAEDDRPINLRCELLIPIRRKLAAA

1bowa YFLNLQ-KLIKYIADRQLTVVSDVYELIIP-IH---YEYRVEMKIRIL------

shift score calculation between the two methods:

1d5ya EFTMPEHKFVTLEDTPLIGVTQSYSCSLEQ-ISDFRHEMRYQFWHDFLGNAPTIPPVLY

1bowa --RLGEVFVLDEEEIRIIQTEAEGIG--PENVLNASYSKLKKFI-ES-------NNSYG

SS CCCCCCEEEEEECCEEEEEEEEECCCCHHH-HHHHHHHHHHHHHHHHHHHCCCCCCCEE

SS --CCCCEEEEEECCEEEEEEECCCCC--HHHHCCCCCHHHHHHC-CC-------CCCEE

shift ..00000000.....000000000..........8888777777.77.......00000

1d5ya GLNETRPSQDKDDEQEVFY-TTALAQDQADGYVLTGHPVMLQGGEYVMFTYEGLGTGVQ

1bowa ATF-SFQP-YTSIDEMT-YRHIFTPVL-ISSITPDMEITTIPKGRYACIAYN--F-S-P

SS EEEEEEECCCCCCCEEEEE-EEEEEHHHHHHHCCCCEEEEECCEEEEEEEEEEEHHHHH

SS EEE-CCCC-CCCCCCCC-CCEEEEECC-CCCCCCCCEEEEECCEEEEEEEEE--C-C-H

shift 000.0011.1111..00.0.0000000.000000000000000000000000..1.2.3

1d5ya EFILTVYGTC-MPML-NL-TRRKGQDIERYYPAEDDRPINLRCELLIPIRRKLAAA

1bowa EHYFLNLQ-KLIKYIADRQLTVVSDVYELIIP-IH---YEYRVEMKIRIL------

SS HHHHHHHHCH-HHHC-CC-EECCCCEEEEECHHHCCCCCEEEEEEEEEEECCCCCC

SS HHHHHHHH-HHHHHHHHHHCCEEEEEEEEEEE-CC---CCEEEEEEEEEC------

shift 3333333..3.3222.21.110.000000000.0....0000000000........

Table A.1: Alignment comparison of the pair 1d5ya.1bowa, yielding a total shift score of 0.58 between

the two methods. The shift score was calculated as derived byCline(2000). Note that the sequence identity

between these two proteins is below 15%.
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Appendix B

Internet resources used

Table B.1: URLs for some Internet resources mentioned or used within this work.

URL Description

ftp://ftp.ncbi.nih.gov/blast BLAST, PSI-BLAST and IMPALA executable

programs

ftp://ftp.ncbi.nih.gov/blast/db/nr.Z non-redundant protein sequence database

ftp://ftp.ncbi.nih.gov/pub/seg/ software to detect low complexity regions in

protein sequences

http://www.sbg.bio.ic.ac.uk/3dgenomics Comparison of Genomes via Protein Structure

http://astral.stanford.edu/ protein sequences for SCOP domains

http://bioinf.cs.ucl.ac.uk/psipred/ secondary structure prediction of protein se-

quences

http://salilab.org/˜eva EValuation of Automatic protein structure pre-

diction

http://hmmer.wustl.edu/ HMMer software package for hidden Markov

models

http://scop.mrc-lmb.cam.ac.uk/scop/ Structural Classification Of Proteins

http://www.biochem.ucl.ac.uk/bsm/cath/ CATH structural classification of proteins

http://www.bmm.icnet.uk Biomolecular Modelling site at Cancer Re-

search UK

http://www.ncbi.nlm.nih.gov U.S. National Center for Biotechnology Infor-

mation

http://www.ncbi.nlm.nih.gov/BLAST/ interactive BLAST and PSI-BLAST

http://www.openpbs.org load sharing system for distributed processing

(continued on next page)

ftp://ftp.ncbi.nih.gov/blast
ftp://ftp.ncbi.nih.gov/blast/db/nr.Z
ftp://ftp.ncbi.nih.gov/pub/seg/
http://www.sbg.bio.ic.ac.uk/3dgenomics
http://astral.stanford.edu/
http://bioinf.cs.ucl.ac.uk/psipred/
http://salilab.org/~eva
http://hmmer.wustl.edu/
http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.biochem.ucl.ac.uk/bsm/cath/
http://www.bmm.icnet.uk
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.openpbs.org
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Table B.1: URLs for some Internet resources mentioned or used within this work.

(continued from previous page)
URL Description

http://www.rcsb.org/ Protein Data Bank

http://www.sanger.ac.uk/Software/Pfam PFAM, protein family and domain database

http://www.sbg.bio.ic.ac.uk/3dpssm/ remote homology detection of protein of known

structure

http://www.structuralgenomics.org/ resource for structural genomics

http://expasy.org/sprot/ Swiss-Prot Protein knowledgebase

http://www.ensembl.org Ensembl Genome Browser

http://wolf.bms.umist.ac.uk/naccess NACCESS

http://predictioncenter.llnl.gov/casp5 CASP5

http://www.bmm.icnet.uk/˜3djigsaw 3D-JIGSAW

http://www.sbg.bio.ic.ac.uk/˜3dpssm 3D-PSSM

http://alax.bio.nagoya-u.ac.jp Alax

http://www.gmd.de/SCAI Arby

http://www.bmm.icnet.uk/˜3djigsaw/domfish DomainFishing

http://www.fundp.ac.be/urbm/bioinfo/esypredEsyPred3D

http://physchem.pharm.kitasatou.ac.jp FAMS

http://www-cryst.bioc.cam.ac.uk/˜fugue FUGUE

http://www.cs.bgu.ac.il/˜bioinbgu INBGU

http://PredictionCenter.llnl.gov/local/lga LGA

http://www.sbc.su.se/˜arne/pcons Pmodeller

http://www.cs.bgu.ac.il/˜dfischer/CAFASP3 CAFASP

http://www.sbg.bio.ic.ac.uk/˜mueller/TeXMed/TeXMed - a BibTeX interface for PubMed

http://www.google.com Google search tools

http://www.rcsb.org
http://www.sanger.ac.uk/Software/Pfam
http://www.sbg.bio.ic.ac.uk/3dpssm/
http://www.structuralgenomics.org/
http://expasy.org/sprot/
http://www.ensembl.org
http://wolf.bms.umist.ac.uk/naccess
http://predictioncenter.llnl.gov/casp5
http://www.bmm.icnet.uk/~3djigsaw
http://www.sbg.bio.ic.ac.uk/~3dpssm
http://alax.bio.nagoya-u.ac.jp
http://www.gmd.de/SCAI
http://www.bmm.icnet.uk/~3djigsaw/domprotect unhbox voidb@x kern .06emvbox {hrule width.3em}fish
http://www.fundp.ac.be/urbm/bioinfo/esypred
http://physchem.pharm.kitasatou.ac.jp
http://www-cryst.bioc.cam.ac.uk/~fugue
http://www.cs.bgu.ac.il/~bioinbgu
http://PredictionCenter.llnl.gov/local/lga
http://www.sbc.su.se/~arne/pcons
http://www.cs.bgu.ac.il/~dfischer/CAFASP3
http://www.sbg.bio.ic.ac.uk/~mueller/TeXMed/
http://www.google.com
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Appendix C

Papers published during this project

Most of the work described here has been published as part of articles in peer-reviewed

journals. These articles are sorted here in chronological order:

• Contreras-Moreira, B. & P. A. Bates (2002). Domain Fishing: a first step in protein

comparative modelling.Bioinformatics, 18(8):1141–2.

• Contreras-Moreira, B., P. W. Fitzjohn & P. A. Bates (2002). Comparative mod-

elling: an essential methodology for protein structure prediction in the post-genomic

era. Applied Bioinformatics, 1(4):177–190.

• Contreras-Moreira, B., P. W. Fitzjohn & P. A. Bates (2003). In silico Protein

Recombination: enhancing template and sequence alignment selection for compar-

ative protein modelling.Journal of Molecular Biology, 328:593–608.

• Contreras-Moreira, B., P. A. Jonsson & P. A. Bates (2003). Structural context of

exons in protein domains: implications for protein modelling and design.Journal

of Molecular Biology, 333:1057-1071.

• Contreras-Moreira, B., P. W. Fitzjohn, M. Offman, G. R. Smith & P. A. Bates

(2003). Novel use of a genetic algorithm for protein structure prediction: searching

template and sequence alignment space.Proteins, S6:424-429.
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