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ABSTRACT A novel genetic algorithm was ap-
plied to all CASP5 targets. The algorithm simulta-
neously searches template and alignment space.
Results show that the current implementation of
the method is perhaps most useful in recognizing
and refining remote homology targets. This new
method is briefly described and results are ana-
lyzed. Strengths and weaknesses of the current
implementation of the algorithm are discussed.
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INTRODUCTION

Comparative Modeling (CM) and Fold Recognition (FR)
methods rely on finding one or more Protein Data Bank
(PDB) structures, used as templates, whose structural
similarity to the query is significant. The underlying
assumption is that similar amino acid sequences have the
same fold, as supported by empirical observation, so the
folding process can be overlooked. An important property
of these methods is that errors incorporated into the
models are a function of the differences in sequence
between query and template(s).1 Evaluation experiments,
such as EVA,2 show that if the sequence identity ranges
from 35% to 100%, models show average deviation values
to the experimental structures in the interval [0.5 Å,6 Å]; if
the sequence identity is less, the upper limit of the interval
reaches values of 15 to 20 Å.3

In previous CASPs, the FR category was defined as the
set of targets whose modeling templates could not be found
with PSI-BLAST,4 being labeled as CM otherwise. Apart
from this difference, the rest of the modeling procedure for
these two categories is essentially the same. Indeed, the
assessors for these categories in CASP4 pointed out that
template selection and sequence alignment errors re-
mained the main (eternal) problems affecting the quality
of models.5,6 For these reasons, we decided to use the same
tools and strategies for all CASP5 targets. In our hands,
FR and CM are the same problem; only the sequence
similarities involved are of different magnitude.

In building models using CM and FR techniques, tem-
plate selection and sequence alignment must be optimized.
We assume that a combination of alignment methods
should be better than any individual method and that

there is currently no way to confidently identify the best
template and, therefore, several templates should be used
and combined. Together with the fact that proteins are
linear molecules, these features suggested to us that
genetic algorithms, widely used in many different protein
structure applications,7–11 could be used to solve these two
problems. In fact, the approach used here tackles both
problems simultaneously. The idea is that different tem-
plates for a given target are just different possible struc-
tures for the same sequence. All templates are assumed to
be homologous proteins, synthesized from homologous
genes, that can undergo genetic recombination or muta-
tion. Recombination is the natural way to exchange linear
DNA segments between homologous chromosomes; in this
context, it is a mechanism to swap protein fragments
around a crossover point. In three dimensions, mutation is
needed to create novel conformations, allowing models to
have segments different from any of the templates used.

Because a model can be considered as an alignment in
three dimensions, models for alternative alignments to the
same template can be used. This simple principle was
implemented and applied to CASP5 targets as a way to
select the optimal templates and the best alignments in a
single step. In this artificial evolutionary process, fitness
for each model within a population is defined by its folding
free energy. Resulting populations of models are optimized
in terms of our free energy measure. However, because the
correlation between structural agreement and our free
energy function is not perfect, this does not guarantee
optimized deviations between model and experimental
structure.

MATERIALS AND METHODS

Because it is a computational implementation of genetic
recombination at the protein level, the procedure used
here is named in silico protein recombination. For each
CASP 5 target, a population of models was generated from
a variety of templates, sequence alignments, and methods.
The algorithm can be outlined as follows:
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initial population of models
2

(1) grow population: r recombination � (1-r) mutation
2

(2) select best proportion according to fitness
2

(3) converged? stop: otherwise back to (1)

This is a genetic algorithm with two genetic operators
(recombination and mutation) and a fitness function act-
ing as an artificial selection agent. Recombination and
mutation events are mutually exclusive, occurring with
frequencies r and 1-r. We now briefly describe each step in
the protocol. Because of space limitations, a more detailed
description has been published elsewhere.12

Initial Population of Models

Initially, the Web server DomainFishing13 was used to
define protein domains within each target sequence and to
find suitable modeling templates. Resulting alignments
(based on sequence profiles and predicted secondary struc-
ture agreement) were inspected and corrected if suspected
to be incorrect. When found, different alignments to the
same template were added to the pool. In several cases
(i.e., T0130) annotations from the templates or their
corresponding PFAM14 families were used to check the
correctness of the alignment in active/binding sites. In
cases in which DomainFishing returned no templates,
alignments were generated by using a profile–profile search
against a nonredundant PDB15 library (here profiles are
position-specific scoring matrices—pssm—as calculated by
PSI-BLAST). Up to seven different alignments for each
library member are calculated by using different similar-
ity matrices (pssm1, pssm2, pssm1 and pssm2) and second-
ary structure predictions. Models from these alignments
were built by using the Web server 3D-JIGSAW16 and the
interactive mode to edit the alignments. To gain extra
variability in sequence alignments, templates, and alter-
nate loop conformations, models were also taken from
different CAFASP 3 servers that return full atomic coordi-
nates. These were FAMS,17 EsyPred,18 Arby, Alax, Ro-
betta,19 and Pmodeller.20 In cases in which the fold of the
target was not clear, models built by using the most
popular templates from the most popular SCOP21 super-
families were preferred.

Models were inspected and missing parts, typically
loops, were added by using in-house software before going
to the next step. In essence, this software explores phi/psi
space to allow a peptide (the missing loop) to connect a gap
in a protein fold. Models were often energy minimized at
this stage to smooth their phi/psi geometry and to permit
unbiased energy calculations at later stages.

Growing the Population by Recombination and
Mutation

Initial populations were grown by randomly selecting
pairs of protein models and applying one of the two
possible operators. In recombination (with frequency r �
0.95), the models were superimposed on the basis of their

sequence alignment and a crossover point drawn. Cross-
over was not permitted inside secondary structure ele-
ments. Resulting recombinant models inherit the N-
terminus from one parent and the C-terminus from the
other. In mutation events, a new protein model was
obtained by simply averaging its parents’ coordinates after
superposition. Sometimes this process resulted in dis-
torted side-chain conformations, but no attempt was made
to correct them in the current implementation. These
distorted mutants are filtered out at the next stage,
because their free energy estimates tend to be highly
disadvantageous. A more rational mutation operator would
be needed for further development of the algorithm.

Selecting the Best Proportion—the Fitness
Function

The justification for this algorithm is that it should be
possible to obtain optimized mosaic models by shuffling
them in a rational way, but this requires an appropriate
fitness function to evaluate and combine models. After
benchmarking, the fitness function was selected to be a
free energy estimate based on two terms: protein contact
pair-potentials and side-chain solvation energies, esti-
mated from their solvent accessible area. This function
E(p) � contacts(p) � solvation(p) seems to provide a
consistent measure of protein structural quality while
keeping the calculation time within practical limits.

Protein contact pair-potentials are calculated by using a
simplified residue representation and summing the all-
against-all energies according to a soft Lennard-Jones
type potential as published by Robson and Osguthorpe.22

Solvation terms are calculated as the sum of side-chain
solvent-exposed area multiplied by tabulated residue solva-
tion free energies.23

When a population reaches the upper limit (between 2
and 4 times its initial size, 30–200 models in our simula-
tions), members are ranked according to their fitness. To
ensure that quality models are not lost prematurely, only
the worst 25% of the population is discarded at this stage.

Convergence Criterion and Final Refinements

When all members of the population have converged to a
similar energy, there is no room for further generation of
variability and the evolution process stops. In most cases,
this final population consists of several representatives of
the same protein conformation with average backbone
deviations in the order of 0.1 Å, but sometimes alternative
conformations can be obtained.

One of these representatives is then taken as the final
model, which is carefully inspected to detect unfavorable
peptide conformations, and a final energy minimization
using the CHARMM2224 force field is performed. This
procedure is able to fix distorted side-chains generated by
mutation. At this point, we have a CASP5 unrefined
model.

For targets T0134, T0165, T0177, and T0185, a further
refinement step was performed. This consisted of running
an all-atom, molecular dynamics (MD) simulation inside a
water box, with neutral total charge for around 0.5 ns. For
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these simulations, we used the GROMACS25 simulation
package and the OPLS-AA26 force field. Snapshots taken
from the trajectory were clustered according to average
backbone deviations, and one conformation from the most
populated cluster was selected. A few more rounds of
CHARMM22 energy minimization were performed, and
then this was submitted as a refined model. Insufficient
computer resources prevented us from refining all targets
by MD simulations.

RESULTS AND DISCUSSION

All 67 CASP5 targets were modeled by using the proto-
col in silico protein recombination. This population ap-
proach was used as an attempt to optimize template-based
models obtained from different sources. The analysis of the
results shows that, in general, recombined models are not
significantly different from the best initial model, if that
could have been identified at the time of submission. Only
in a handful of cases did recombination yield slightly
better models. With a similar frequency, the algorithm
yields slightly worse models than the best initial, particu-
larly when all the initial models are poor.

The performance of the method is similar across all
CASP5 targets, but here only remote homology targets,
down to the New Fold (NF) category, are discussed,
because alignment errors and incorrect selection of tem-
plates become more frequent for these targets. In relative
terms, our method appears to be more competitive in this
range. Table I shows our analysis for the results of these 24
domains, after comparing our models with the targets for
which the experimental structure is available. As de-
scribed in Materials and Methods, a set of template-based
models was constructed for each target to seed the initial
population for a recombination experiment. The final
model submitted was selected from those in the last
generation of models, after convergence. This table shows
how different the final recombinant models (Rec) are with
respect to the initial models, constructed with the servers
stated on the top of each column. To compare models, two
standard CASP scores were computed (AL_4 and GDT_TS)
by using the program LGA.27 AL_4 is defined as the
percentage of residues in a model for which corresponding
residues in the target are within �4 residues of the correct
location (when superposed independently of sequence),

TABLE I. Performance of Protein Recombination in the CM/FR, FR(Homology), FR(Analogy), and FR/NF Categories

AL_4 GDT_TS

3D-Jigsaw Pmodeller Others Rec 3D-Jigsaw Pmodeller Others Rec

CM/FR
T0130 61–60[2] 63 43.2–40[2] 37.3
T0132 66.4–56.8[3] 84.9–56.8[2] 82.2 42.3–39.4[3] 60.4–44.3[2] 61.6
T0159_1 53.3–18.6[10] 26.9–13.2[3] 40.7 36.9–16.2[10] 17–12.6[3]* 25.4
T0159_2 53.5–37.3[10] 44.4–32.4[3] 52.8 34.3–23.4[10] 27.8–23.4[3]* 33.1
T0168_1 58.8–49.4[4] 65.9–43.5[10] 53.5 40.1–34.8[4] 42.8–30.4[10] 35.7
T0168_2 26.2–17.7[4] 31.2–16.3[10] 16.3 22.1–19.1[4] 24.2–18.4[10] 19.7
FR(H)
T0134_1 67.5[1] 72.2–32.5[7] 69.8 40.7[1] 43.8–20.4[7] 39.1
T0134_2 89.6[1] 87.7–70.7[7] 82.1 58.5[1] 66–42.7[7] 63.4
T0138 78.5–15.6[6] 83.7–60.7[10] 66 43.5–12.4[6] 58.3–47.9[10] 48.7
T0157 80.8–30.8[8] 41.7–10.8[4] 74.2 56.4–25[8] 56.4–22.9[4]? 52.5
T0174_1 15.2[2] 16.7 14.2[2] 14.5
T0174_2 23.9[2] 26.4 23.7[2] 23.7
FR(A)
T0135(w) 25.5[1] 17.4[1]!
T0147 22.6–14.5[5] 27.8–20.5[2] 43.6 32.9–23.9[5] 29.6–27.1[2]� 27.7
T0148_1 5.6[1] 23.9–5.6[5] 64.8 27.5[1] 45.1–26.8[5] 45.8
T0148_2 13.2[1] 13.2–6.6[5] 27.5 24.7[1] 35.7–28[5] 29.7
T0187_2(w) 15–8.8[2] 17.1 11.8–10.6[2]# 11.9
T0191_1(w) 15.1[1] 49.6–12.2[8] 21.6–12.2[5] 15.8 14.9[1] 34.9–15.3[8] 18–14.9[5]# 16.4
T0191_2 80.4[1] 81.8–61.5[8] 83.9–60.1[5] 80.4 51.6[1] 56.3–40[8] 52.8–43.4[5]# 52.6
FR/NF
T0170 63.8–13[10] 47.8 49.6–31.9[10] 37.7
T0172_2 36.6–17.8[4] 26.7–14.8[11] 17.8 24.7–19.8[4] 20.5–17[11]$ 18.1
T0173 18.1–14.6[3] 19.9[1] 18.1 13–10.1[3] 15.1[1]# 13
T0186_3 36.1–30.6[3] 50–30.6[10] 44.4–33.3[5] 38.9 29.2–27.8[3] 36.8–30.6[10] 29.9–28.5[5]# 29.9
T0187_1 17.6–16[2] 18.2 17.5–16.6[2]# 18.2

The first column states the target name (w for targets modeled by using templates with incorrect folds). The left side of the table shows AL_4
scores for the initial models fed into the recombination algorithm. These models were obtained from different Web servers (3D-JIGSAW,
Pmodeller, and Others). Ranges show the best and the worst scored models, with the total number of models in square brackets. The fifth column
shows the AL_4 score for the recombinant models. The right side of the table shows the analysis of the same data, using GDT_TS scores. See the
main text for the definitions of these scores. “Others” are servers participating in CAFASP 3, where * indicates servers {Fams,Alax,Robetta}, ?
Robetta, � {Robetta,Arby}, # Fams and $ {Fams,Alax}. Finally, ! indicates an experimental FR method by secondary structure pattern matching,
developed by P.W. Fitzjohn.
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and the distance between corresponding residues is �4 Å.
GDT_TS is the average percentage of residues under a
series of distance cutoffs (1, 2, 4, and 8 Å) after a
sequence-dependent superposition. We discuss some cases
in the light of these comparisons.

T0132 (HI0827, Haemophilus influenzae)

This CM/FR target was identified as a thioesterase by
DomainFishing. By using profile–profile searches (see
Materials and Methods), the template 1BVQ, a CoA-
thioesterase from Pseudomonas sp., was confidently found.
However, the alignment was not trivial, so three different
alignments were used to build models with 3D-JIGSAW,
and two more models were taken from Pmodeller, with one
of them using a different template, 1C8U, another bacte-
rial CoA-related enzyme. Recombination built a model
that incorporated fragments from both templates but
eventually had a very similar score to the best initial
model, a Pmodeller model based on an alignment gener-
ated by INBGU.28 We now analyze in more detail the
major difficulties of the model, the phasing of strands 2
and 5 of the core �-sheet. For strand 2, our initial set of five
alignments contained only segments shifted one or two
positions with respect to the correct alignment. The result-
ing recombinant alignment is shifted one position at this
point. However, for strand 5, there were two initial correct
alignments (the remaining alignments were shifted by one
and two positions), and they were incorporated into the
final recombinant model. These results show how impor-
tant it is to properly sample segments of ambiguous
alignment, because the algorithm cannot generate align-
ments omitted from the initial population.

T0157 (yqgF, Escherichia coli)

This target was classified as FR(Homology) by the
CASP5 assessors and was related to DNA-binding proteins
according to the homologous sequences found by PSI-
BLAST in the NCBI nr database. We could not find any
confident template(s), so we took models from the CAFASP
3 results page. In particular, models from Robetta and
Pmodeller were selected because they used the most
popular templates (1KCF and 1HJR, E. coli and yeast
endonucleases). Different alignments were found for each
of them, and a recombination experiment was set to select
the best. The recombinant model is comparable, although
slightly worse than, the best initial one (based on an
alignment generated by FUGUE29 using 1HJR) but incor-
porating two different loops and a differently phased
�-helix. The main difficulty of the target, an �-helix with a
different angle to equivalent helices on the templates, was
not resolved.

T0147 (ycdX, E.coli)

This FR(Analogy) target was identified as a PHP domain
by DomainFishing, but no template could be found with
our own set of tools, so once again, models for the most
popular templates found by the CAFASP servers were
downloaded. All these templates (1DHP, 1H5Y, 1QO2,
1THF, and 1NAL) were TIM barrels, with eight �-strands,

whereas the target sequence had only seven �-strands
predicted. No conclusive functional hint was found to help
in selecting templates, so a set of seven models from
Pmodeller, Robetta, and Arby was recombined by using
the genetic algorithm. Like the initial models, the final
recombinant model selected by our fitness function has a
poor GDT_TS score. But as shown in Table I, the AL_4
score is considerably better than any of these. This ex-
ample is shown in Figure 1 and is a good illustration of how
the protein recombination algorithm works. In this case,
the recombinant model includes two fragments from two
models built from two different templates, obtaining a
final composite model that can be better equivalenced to
the experimental (in AL_4 terms). The algorithm took the
better sections from each of the two models to build an
improved, hybrid, model. Figure 1(B) shows the set of
possible crossover points between these two initial models
(marked as *). This points out one important limitation of
this technique: useful crossovers between models are only
possible if they can be reasonably superimposed in three
dimensions, keeping together fragments with the same
sequence.

T0170 (FF Domain of HYPA/FBP11, Homo sapiens)

Confident modeling template(s) could not be found by
using our standard sequence similarity tools (a FR/NF
target), and because of its helical secondary structure,
many helical folds were nonspecifically recognized in our
profile–profile template search. Thus, we decided to take
all 10 models provided by Pmodeller and recombine them.
Post-CASP analysis shows that the best initial model,
based on the homeodomain 1LFB and aligned by 3D-
PSSM,30 is much better than the final recombinant model,
suggesting that the algorithm tested may not perform very
well with small helical proteins. However, repeating the
recombination with the latest version of in silico protein
recombination, which calculates free energies per residue,
allowing comparison of proteins of different length, pro-
vides a recombinant model scoring 58 AL_4 and 46.7
GDT_TS, comparable to the best initial model.

It is interesting to compare the ability of the algorithm
to produce recombinant models for CM targets. Despite
the simplicity of the potential energy function, in most
cases, the algorithm presented here selected the best
possible alignments and templates from the initial avail-
able ensemble. In some cases, our recombinant models
were significantly worse than those constructed by the
best predictors. Analysis of some of these results (targets
T0137, T0153, T0177, T0178, T0182, and T0192) shows
that the quality of the initial models used in the recombina-
tion experiments is the main reason. Particularly, we
believe that loop conformations were not successfully
sampled for each initial model. We also noted that recombi-
nation can sometimes improve alignments but at the cost
of making GDT_TS scores worse—possibly due to accumu-
lation of errors during the evolutionary procedure.

Finally, we comment on the MD simulations ran for
targets T0134, T0165, T0177, and T0185. In T0134_2, 0.5
ns of MD moved the protein considerably, diminishing the
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GDT_TS score but increasing the AL_4. For the rest of the
targets, MD did not have an important effect over the
structure, with final GDT_TS and AL_4 values very close,
but slightly worse, than the unrefined model.

CONCLUSIONS

The genetic algorithm tested in CASP5 tends to produce
recombinant models that are comparable to the best initial
model, if we had identified it. This result suggests that our
simple fitness function correctly identifies good models,
making it a good candidate to filter and rank models from
FR servers as well as models built in-house, or indeed a
combination of both. In addition, the method has been
shown to be able to improve alignments by recombining
well-aligned regions from individual models. Unfortu-
nately, the quality of the models used to seed the first
generation seems to be the upper limit for the quality of
the final model, showing that the current implementation

of the algorithm is not adding much beyond this baseline.
Finally, because good global superpositions are required
for useful crossover, the current implementation of in
silico protein recombination cannot recombine efficiently
proteins that are totally different or have different domain
orientations. This suggests that local superpositions may
be required.
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